Renormalization group and the~$\varepsilon$-expansion: Representation of the~$\beta$-function and anomalous dimensions by nonsingular integrals
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 100-111
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the framework of the renormalization group and the $\varepsilon$-expansion, we propose expressions for the $\beta$-function and anomalous dimensions in terms of renormalized one-irreducible functions. These expressions are convenient for numerical calculations. We choose the renormalization scheme in which the quantities calculated using $R$ operations are represented by integrals that do not contain singularities in $\varepsilon$. We develop a completely automated calculation system starting from constructing diagrams, determining relevant subgraphs, combinatorial coefficients, etc., up to determining critical exponents. As an example, we calculate the critical exponents of the $\varphi^3$ model in the order $\varepsilon^4$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
renormalization group, $\varepsilon$-expansion, multiloop diagrams, critical exponents.
                    
                  
                
                
                @article{TMF_2011_169_1_a9,
     author = {L. Ts. Adzhemyan and M. V. Kompaniets},
     title = {Renormalization group and the~$\varepsilon$-expansion: {Representation} of the~$\beta$-function and anomalous dimensions by nonsingular integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {100--111},
     publisher = {mathdoc},
     volume = {169},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a9/}
}
                      
                      
                    TY - JOUR AU - L. Ts. Adzhemyan AU - M. V. Kompaniets TI - Renormalization group and the~$\varepsilon$-expansion: Representation of the~$\beta$-function and anomalous dimensions by nonsingular integrals JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 100 EP - 111 VL - 169 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a9/ LA - ru ID - TMF_2011_169_1_a9 ER -
%0 Journal Article %A L. Ts. Adzhemyan %A M. V. Kompaniets %T Renormalization group and the~$\varepsilon$-expansion: Representation of the~$\beta$-function and anomalous dimensions by nonsingular integrals %J Teoretičeskaâ i matematičeskaâ fizika %D 2011 %P 100-111 %V 169 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a9/ %G ru %F TMF_2011_169_1_a9
L. Ts. Adzhemyan; M. V. Kompaniets. Renormalization group and the~$\varepsilon$-expansion: Representation of the~$\beta$-function and anomalous dimensions by nonsingular integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 100-111. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a9/
