Renormalization group and the $\varepsilon$-expansion: Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 100-111
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the renormalization group and the $\varepsilon$-expansion, we propose expressions for the $\beta$-function and anomalous dimensions in terms of renormalized one-irreducible functions. These expressions are convenient for numerical calculations. We choose the renormalization scheme in which the quantities calculated using $R$ operations are represented by integrals that do not contain singularities in $\varepsilon$. We develop a completely automated calculation system starting from constructing diagrams, determining relevant subgraphs, combinatorial coefficients, etc., up to determining critical exponents. As an example, we calculate the critical exponents of the $\varphi^3$ model in the order $\varepsilon^4$.
Keywords: renormalization group, $\varepsilon$-expansion, multiloop diagrams, critical exponents.
@article{TMF_2011_169_1_a9,
     author = {L. Ts. Adzhemyan and M. V. Kompaniets},
     title = {Renormalization group and the~$\varepsilon$-expansion: {Representation} of the~$\beta$-function and anomalous dimensions by nonsingular integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {100--111},
     year = {2011},
     volume = {169},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a9/}
}
TY  - JOUR
AU  - L. Ts. Adzhemyan
AU  - M. V. Kompaniets
TI  - Renormalization group and the $\varepsilon$-expansion: Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 100
EP  - 111
VL  - 169
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a9/
LA  - ru
ID  - TMF_2011_169_1_a9
ER  - 
%0 Journal Article
%A L. Ts. Adzhemyan
%A M. V. Kompaniets
%T Renormalization group and the $\varepsilon$-expansion: Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 100-111
%V 169
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a9/
%G ru
%F TMF_2011_169_1_a9
L. Ts. Adzhemyan; M. V. Kompaniets. Renormalization group and the $\varepsilon$-expansion: Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 100-111. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a9/

[1] H. Kleinert, V. Schulte-Frohlinde, Critical Properties of $\varphi^4$-Theories, Word Sci. Publ., River Edge, NJ, 2001 | MR

[2] N. V. Antonov, A. N. Vasilev, TMF, 60:1 (1984), 59–71 | DOI

[3] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[4] O. I. Zavyalov, Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR

[5] T. Kaneko, grc (Feynman graph generator), GRACE System http://minami-home.kek.jp/

[6] R. Kreckel, Comp. Phys. Commun., 106:3 (1997), 258–266 ; ; Cuba – a library for multidimensional numerical integration ftp://ftpthep.physik.uni-mainz.de/pub/pvegas/http://www.feynarts.de/cuba/ | DOI | Zbl

[7] O. F. de Alcantara Bonfim, J. E. Kirkham, A. J. McKane, J. Phys A, 13:7 (1980), L247–L251 | DOI

[8] O. F. de Alcantara Bonfim, J. E. Kirkham, A. J. McKane, J. Phys A, 14:9 (1981), 2391–2413 | DOI

[9] L. Ts. Adzhemyan, S. N. Novikov, L. Sladkoff, Vestn. SPbGU. Ser. 4: Fizika, khimiya, 2008, no. 4, 110–114