Bose condensation: The viscosity critical dimension and developed turbulence
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 89-99
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a model for studying the mutual influence of critical fluctuations in the vicinity of the critical point of phase transition to a superfluid state and the velocity fluctuations in the developed turbulence regime. We demonstrate the presence of two different regimes: the turbulence regime and the equilibrium regime. We show that the standard critical behavior can break in the turbulence regime. The viscosity becomes an infrared-irrelevant parameter in the equilibrium regime. We justify the assumption that the viscosity critical dimension in this regime is determined by critical indices of the critical behavior statistical model, which are currently known with sufficient accuracy.
Keywords: Bose–Einstein condensation, developed turbulence, renormalization group, stochastic dynamics, critical behavior.
@article{TMF_2011_169_1_a8,
     author = {M. V. Komarova and D. M. Krasnov and M. Yu. Nalimov},
     title = {Bose condensation: {The~viscosity} critical dimension and developed turbulence},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {89--99},
     year = {2011},
     volume = {169},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a8/}
}
TY  - JOUR
AU  - M. V. Komarova
AU  - D. M. Krasnov
AU  - M. Yu. Nalimov
TI  - Bose condensation: The viscosity critical dimension and developed turbulence
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 89
EP  - 99
VL  - 169
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a8/
LA  - ru
ID  - TMF_2011_169_1_a8
ER  - 
%0 Journal Article
%A M. V. Komarova
%A D. M. Krasnov
%A M. Yu. Nalimov
%T Bose condensation: The viscosity critical dimension and developed turbulence
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 89-99
%V 169
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a8/
%G ru
%F TMF_2011_169_1_a8
M. V. Komarova; D. M. Krasnov; M. Yu. Nalimov. Bose condensation: The viscosity critical dimension and developed turbulence. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 89-99. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a8/

[1] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Nauka, M., 1998 | MR

[2] A. N. Vasilev, Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo LGU, L., 1976 | Zbl

[3] P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys., 49:3 (1977), 435–479 | DOI

[4] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998

[5] C. De Dominicis, L. Peliti, Phys. Rev. B, 18:1 (1978), 353–376 | DOI

[6] J. Honkonen, M. Yu. Nalimov, J. Phys. A, 22:6 (1989), 751–763 | DOI

[7] J. Honkonen, M. Yu. Nalimov, Z. Phys. B, 99:2 (1996), 297–303 | DOI

[8] N. V. Antonov, M. Hnatic, J. Honkonen, J. Phys. A, 39:25 (2006), 7867–7887, arXiv: cond-mat/0604434 | DOI | MR | Zbl

[9] P. C. Martin, E. D. Siggia, H. A. Rose, Phys. Rev. A, 8:1 (1973), 423–437 | DOI