Scattering of electromagnetic waves on a planar surface in a model with the Chern–Simons potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 69-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Chern–Simons potential occurs in quantum electrodynamics in constructing a model for the interaction of a material surface with the photon field if the locality, gauge invariance, and renormalizability requirements are imposed. In the framework of such a model, we consider the problem of an electromagnetic wave scattering on a plane.
Mots-clés : Casimir effect
Keywords: electrodynamics in a space with macroscopic inhomogeneities, Chern–Simons potential, wave scattering.
@article{TMF_2011_169_1_a6,
     author = {D. Yu. Pis'mak and Yu. M. Pis'mak},
     title = {Scattering of electromagnetic waves on a~planar surface in a~model with {the~Chern{\textendash}Simons} potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--78},
     year = {2011},
     volume = {169},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a6/}
}
TY  - JOUR
AU  - D. Yu. Pis'mak
AU  - Yu. M. Pis'mak
TI  - Scattering of electromagnetic waves on a planar surface in a model with the Chern–Simons potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 69
EP  - 78
VL  - 169
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a6/
LA  - ru
ID  - TMF_2011_169_1_a6
ER  - 
%0 Journal Article
%A D. Yu. Pis'mak
%A Yu. M. Pis'mak
%T Scattering of electromagnetic waves on a planar surface in a model with the Chern–Simons potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 69-78
%V 169
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a6/
%G ru
%F TMF_2011_169_1_a6
D. Yu. Pis'mak; Yu. M. Pis'mak. Scattering of electromagnetic waves on a planar surface in a model with the Chern–Simons potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a6/

[1] H. B. G. Casimir, Proc. Akad. Wet. Amsterdam, 51 (1948), 793–795 | MR | Zbl

[2] U. Mohideen, A. Roy, Phys. Rev. Lett., 81:21 (1998), 4549–4552, arXiv: ; A. Roy, C.-Y. Lin, U. Mohideen, Phys. Rev. D, 60:11 (1999), 111101(R), 5 pp., arXiv: physics/9805038quant-ph/9906062 | DOI | DOI

[3] B. W. Harris, F. Chen, U. Mohideen, Phys. Rev. A, 62:5 (2000), 052109, 5 pp. | DOI

[4] G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, Phys. Rev. Lett., 88:4 (2002), 041804, 4 pp., arXiv: quant-ph/0203002 | DOI

[5] K. A. Milton, J. Phys. A, 37:38 (2004), R209–R277, arXiv: hep-th/0406024 | DOI | MR | Zbl

[6] V. N. Markov, Yu. M. Pis'mak, J. Phys. A, 39:21 (2006), 6525–6532, arXiv: hep-th/0606058 | DOI | MR | Zbl

[7] V. N. Marachevsky, Yu. M. Pis'mak, Phys. Rev. D, 81 (2010), 065005, 6 pp., arXiv: 0907.1985 | DOI