Multiparticle space–time transitions in the totally asymmetric simple exclusion process
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 167-175
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study correlation functions of the totally asymmetric simple exclusion process (TASEP) in discrete time with backward sequential update. We prove a determinant formula for the generalized Green's function describing transitions between particle positions at given instants. As an example, we calculate the current correlation function, i.e., the joint probability distribution of times required by each particle to travel a given distance. An asymptotic analysis shows that current fluctuations converge to the Airy$_2$ process.
Mots-clés : простой полностью асимметричный процесс с исключающим взаимодействием, анзац Бете, детерминантный точечный процесс, класс универсальности Кардара–Паризи–Жанга.
@article{TMF_2011_169_1_a15,
     author = {A. M. Povolotskii and V. B. Priezzhev},
     title = {Multiparticle space{\textendash}time transitions in the~totally asymmetric simple exclusion process},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {167--175},
     year = {2011},
     volume = {169},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a15/}
}
TY  - JOUR
AU  - A. M. Povolotskii
AU  - V. B. Priezzhev
TI  - Multiparticle space–time transitions in the totally asymmetric simple exclusion process
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 167
EP  - 175
VL  - 169
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a15/
LA  - ru
ID  - TMF_2011_169_1_a15
ER  - 
%0 Journal Article
%A A. M. Povolotskii
%A V. B. Priezzhev
%T Multiparticle space–time transitions in the totally asymmetric simple exclusion process
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 167-175
%V 169
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a15/
%G ru
%F TMF_2011_169_1_a15
A. M. Povolotskii; V. B. Priezzhev. Multiparticle space–time transitions in the totally asymmetric simple exclusion process. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 167-175. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a15/

[1] T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Fundamental Principles of Mathematical Sciences, 324, Springer, Berlin, 1999 | MR | Zbl

[2] H. Spohn, Large scale dynamics of interacting particles, Texts and Monographs in Physics, 342, Springer, Berlin, 1991 | Zbl

[3] B. Derrida, Phys. Rep., 301:1–3 (1998), 65–83 | DOI | MR

[4] G. M. Schütz, “Exactly solvable models for many-body systems far from equilibrium”, Phase Transitions and Critical Phenomena, 19, eds. C. Domb, J. L. Lebowitz, Academic Press, San Diego, CA, 2001, 3–255 | MR

[5] G. M. Schütz, J. Stat. Phys., 88:1–2 (1997), 427–445, arXiv: cond-mat/9701019 | DOI | MR | Zbl

[6] V. B. Priezzhev, Pramana, 64:6 (2005), 915–925 | DOI

[7] A. Rákos, G. M. Schütz, J. Stat. Phys., 118:3–4 (2005), 511–530, arXiv: cond-mat/0405464 | DOI | MR | Zbl

[8] A. M. Povolotsky, V. B. Priezzhev, J. Stat. Mech., 7 (2006), P07002, 28 pp., arXiv: cond-mat/0605150 | DOI

[9] V. B. Priezzhev, Phys. Rev. Lett., 91:5 (2003), 050601, 4 pp., arXiv: cond-mat/0211052 | DOI

[10] A. M. Povolotsky, V. B. Priezzhev, J. Stat. Mech., 8 (2007), P08018, 27 pp., arXiv: 0706.1890 | DOI | MR

[11] K. Johansson, Commun. Math. Phys., 209:2 (2000), 437–476, arXiv: math/9903134 | DOI | MR | Zbl

[12] T. Nagao, T. Sasamoto, Nucl. Phys. B, 699:3 (2004), 487–502, arXiv: cond-mat/0405321 | DOI | MR | Zbl

[13] T. Sasamoto, J. Phys. A, 38:33 (2005), L549–L556, arXiv: cond-mat/0504417 | DOI | MR

[14] A. Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto, J. Stat. Phys., 129:5–6 (2007), 1055–1080, arXiv: math-ph/0608056 | DOI | MR | Zbl

[15] A. Borodin, P. L. Ferrari, M. Prähofer, Int. Math. Res. Pap., 1 (2007), rpm002, 47 pp. | DOI | MR | Zbl

[16] A. Borodin, P. L. Ferrari, T. Sasamoto, Comm. Pure Appl. Math., 61:11 (2008), 1603–1629, arXiv: math-ph/0703023 | DOI | MR | Zbl

[17] T. Imamura, T. Sasamoto, J. Stat. Phys., 128:4 (2007), 799–846, arXiv: math-ph/0702009 | DOI | MR | Zbl

[18] A. Borodin, P. L. Ferrari, Electron. J. Probab., 13 (2008), 1380–1418 | DOI | MR | Zbl

[19] A. Borodin, P. L. Ferrari, T. Sasamoto, Commun. Math. Phys., 283:2 (2008), 417–449, arXiv: 0707.4207 | DOI | MR | Zbl

[20] M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett., 56:9 (1986), 889–892 | DOI | Zbl

[21] M. Prähofer, H. Spohn, Phys. Rev. Lett., 84:21 (2000), 4882–4885, arXiv: cond-mat/9912264 | DOI

[22] P. L. Ferrari, J. Stat. Mech., 7 (2008), P07022, 17 pp., arXiv: 0806.1350 | DOI

[23] A. M. Povolotsky, V. B. Priezzhev, G. M. Schütz, J. Stat. Phys., 142:4 (2011), 754–791, arXiv: 1007.1391 | DOI | MR | Zbl

[24] J. G. Brankov, V. B. Priezzhev, R. V. Shelest, Phys. Rev. E, 69:6 (2004), 066136, 9 | DOI | MR

[25] A. Borodin, E. M. Rains, J. Stat. Phys., 121:3–4 (2005), 291–317, arXiv: math-ph/0409059 | DOI | MR | Zbl

[26] H. Rost, Z. Wahrsch. Verw. Gebiete, 58:1 (1981), 41–53 | DOI | MR | Zbl