Leading infrared logarithms for the $\sigma$-model with fields on an arbitrary Riemann manifold
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 158-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive a nonlinear recurrence equation for the infrared leading logarithms (LLs) in the four-dimensional $\sigma$-model with fields on an arbitrary Riemann manifold. The derived equation allows computing the LLs to an essentially unlimited loop order in terms of the geometric characteristics of the Riemann manifold. We reduce solving the $SU(\infty)$ principal chiral field in an arbitrary number of dimensions in the LL approximation to solving a very simple recurrence equation. This result prepares a way to solve the model in an arbitrary number of dimensions as $N\to\infty$.
Keywords: renormalization group, sigma model, large $N$.
@article{TMF_2011_169_1_a14,
     author = {M. V. Polyakov and A. A. Vladimirov},
     title = {Leading infrared logarithms for the~$\sigma$-model with fields on an~arbitrary {Riemann} manifold},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {158--166},
     year = {2011},
     volume = {169},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a14/}
}
TY  - JOUR
AU  - M. V. Polyakov
AU  - A. A. Vladimirov
TI  - Leading infrared logarithms for the $\sigma$-model with fields on an arbitrary Riemann manifold
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 158
EP  - 166
VL  - 169
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a14/
LA  - ru
ID  - TMF_2011_169_1_a14
ER  - 
%0 Journal Article
%A M. V. Polyakov
%A A. A. Vladimirov
%T Leading infrared logarithms for the $\sigma$-model with fields on an arbitrary Riemann manifold
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 158-166
%V 169
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a14/
%G ru
%F TMF_2011_169_1_a14
M. V. Polyakov; A. A. Vladimirov. Leading infrared logarithms for the $\sigma$-model with fields on an arbitrary Riemann manifold. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 158-166. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a14/

[1] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[2] S. Weinberg, Effective field theory, past and future, arXiv: 0908.1964 | MR

[3] M. Büchler, G. Colangelo, Eur. Phys. J. C, 32:3 (2003), 427–442, arXiv: hep-ph/0309049 | DOI | MR

[4] J. Bijnens, L. Carloni, Nucl. Phys. B, 827:1–2 (2010), 237–255, arXiv: ; 843:1 (2011), 55–83, arXiv: 0909.50861008.3499 | DOI | MR | Zbl | DOI | MR

[5] M. Bissegger, A. Fuhrer, Phys. Lett. B, 646:1–2 (2007), 72–79, arXiv: hep-ph/0612096 | DOI | Zbl

[6] N. Kivel, M. V. Polyakov, A. Vladimirov, Phys. Rev. Lett., 101 (2008), 262001 ; arXiv: 0809.3236 | DOI

[7] N. A. Kivel, M. V. Polyakov, A. A. Vladimirov, Pisma v ZhETF, 89:11 (2009), 621–635 ; arXiv: 0904.3008

[8] J. Koschinski, M. V. Polyakov, A. A. Vladimirov, Phys. Rev. D, 82 (2010), 014014 ; arXiv: 1004.2197 | DOI

[9] D. H. Friedan, Ann. Phys., 163:2 (1985), 318–419 | DOI | MR | Zbl

[10] J. Honerkamp, Nucl. Phys. B, 36:1 (1972), 130–140 | DOI

[11] P. S. Howe, G. Papadopoulos, K. S. Stelle, Nucl. Phys. B, 296:1 (1988), 26–48 | DOI | MR

[12] B. Riemann, Neu Nachrichten der Königlichen Gesellschaft von Wissenschaften zu Göttingen, 13 (1868), 133

[13] A. N. Vasilev, Yu. M. Pismak, Yu. R. Khonkonen, TMF, 46:2 (1981), 157–171 ; 47:3 (1981), 291–306 ; 50:2 (1982), 195–206 | DOI | MR | DOI | DOI

[14] A. M. Polyakov, Kalibrovochnye polya i struny, Izd-vo UdGU, Izhevsk, 1999 | Zbl

[15] A. A. Vladimirov, Infrared logarithms in effective field theories, PhD Thesis, Ruhr-University, Bochum, Germany, 2010