Field theory approach in kinetic reaction: Role of random sources and sinks
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 146-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of a field theory model obtained by “second quantization” of a Doi-type master equation, we investigate the effects of random sources and sinks on the reaction kinetics in the master-equation description. We show that random sources and sinks significantly affect the asymptotic behavior of the model and identify two universality classes when describing them using scaling analysis. We compare the results with the Langevin-equation description of the same process.
Keywords: renormalization group, reaction kinetics, random sink, random source, dimensional analysis, effective action.
@article{TMF_2011_169_1_a13,
     author = {M. Gnatich and J. Honkonen and T. Lu\v{c}ivjansk\'y},
     title = {Field theory approach in kinetic reaction: {Role} of random sources and sinks},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {146--157},
     year = {2011},
     volume = {169},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a13/}
}
TY  - JOUR
AU  - M. Gnatich
AU  - J. Honkonen
AU  - T. Lučivjanský
TI  - Field theory approach in kinetic reaction: Role of random sources and sinks
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 146
EP  - 157
VL  - 169
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a13/
LA  - ru
ID  - TMF_2011_169_1_a13
ER  - 
%0 Journal Article
%A M. Gnatich
%A J. Honkonen
%A T. Lučivjanský
%T Field theory approach in kinetic reaction: Role of random sources and sinks
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 146-157
%V 169
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a13/
%G ru
%F TMF_2011_169_1_a13
M. Gnatich; J. Honkonen; T. Lučivjanský. Field theory approach in kinetic reaction: Role of random sources and sinks. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 146-157. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a13/

[1] M. Doi, J. Phys. A, 9:9 (1976), 1465–1477 ; 1479–1495 | DOI | DOI

[2] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[3] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1984 | MR | Zbl

[4] M. Hnatich, J. Honkonen, Phys. Rev. E, 61:4 (2000), 3904–3911 | DOI | MR

[5] A. N. Vasilev, Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo LGU, L., 1976 | MR | Zbl

[6] V. N. Gribov, ZhETF, 53:2 (1967), 654–672

[7] N. V. Antonov, A. S. Kapustin, J. Phys. A, 43:40 (2010), 405001, 22 pp., arXiv: 1006.3133 | DOI | MR | Zbl