Effective action for Regge processes in QCD and in gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 9-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Gribov approach to hadron–hadron high-energy scattering, which is based on an effective field theory for the Pomeron interactions. Because the gluons and gravitons in QCD and in gravity are Reggeized, it seems natural to reformulate these theories at high energies in terms of Reggeons. We review the basic ideas of the BFKL approach in QCD and in supersymmetric models and present it in the form of a gauge-invariant effective theory for the Reggeized gluon interactions. We formulate the analogous generally covariant action for the Reggeized gravitons in terms of effective currents satisfying the Hamilton–Jacobi equation.
Keywords: scattering amplitude, Regge asymptotic behavior, effective field theory, quantum gravity.
Mots-clés : BFKL equation
@article{TMF_2011_169_1_a1,
     author = {L. N. Lipatov},
     title = {Effective action for {Regge} processes in {QCD} and in gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {169},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a1/}
}
TY  - JOUR
AU  - L. N. Lipatov
TI  - Effective action for Regge processes in QCD and in gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 9
EP  - 19
VL  - 169
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a1/
LA  - ru
ID  - TMF_2011_169_1_a1
ER  - 
%0 Journal Article
%A L. N. Lipatov
%T Effective action for Regge processes in QCD and in gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 9-19
%V 169
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a1/
%G ru
%F TMF_2011_169_1_a1
L. N. Lipatov. Effective action for Regge processes in QCD and in gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a1/