Two-time correlation functions in an exactly solvable spin-boson model
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 482-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a spin-boson model describing the dephasing process in an open quantum system and obtain exact expressions for the two-time spin correlation function and the decoherence function applicable for any values of the coupling constants. We show that the initial statistical correlations between the dynamical system and the heat bath considerably affect the time dependence of the decoherence function.
Keywords: open quantum system, dephasing in quantum systems, spin-boson model.
@article{TMF_2011_168_3_a9,
     author = {V. G. Morozov and G. R\"opke},
     title = {Two-time correlation functions in an~exactly solvable spin-boson model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {482--489},
     year = {2011},
     volume = {168},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a9/}
}
TY  - JOUR
AU  - V. G. Morozov
AU  - G. Röpke
TI  - Two-time correlation functions in an exactly solvable spin-boson model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 482
EP  - 489
VL  - 168
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a9/
LA  - ru
ID  - TMF_2011_168_3_a9
ER  - 
%0 Journal Article
%A V. G. Morozov
%A G. Röpke
%T Two-time correlation functions in an exactly solvable spin-boson model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 482-489
%V 168
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a9/
%G ru
%F TMF_2011_168_3_a9
V. G. Morozov; G. Röpke. Two-time correlation functions in an exactly solvable spin-boson model. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 482-489. http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a9/

[1] N. N. Bogolyubov, S. V. Tyablikov, Dokl. AN SSSR, 126:1 (1959), 53–56 | MR | Zbl

[2] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR

[3] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, Fizmatlit, M., 2002 | MR | Zbl

[4] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys., 59:1 (1987), 1–85 ; Erratum 67 (1995), 725–726 | DOI | MR | DOI

[5] U. Weiss, Quantum Dissipative Systems, Ser. Modern Condens. Matter Phys. 10, World Scientific, Singapore, 1999 | DOI | MR | Zbl

[6] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[7] M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, 1997

[8] D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information. Quantum Cryptography, Quantum Teleportation, Quantum computation, Springer, Berlin, 2000 | MR | Zbl

[9] K. A. Valiev, UFN, 175:1 (2005), 3–39 | DOI

[10] W. G. Unruh, Phys. Rev. A, 51:2 (1995), 992–997 | DOI | MR

[11] G. M. Palma, K.-A. Suominen, A. K. Ekert, Proc. R. Soc. Lond. A, 452:1946 (1996), 567–584 | DOI | MR | Zbl

[12] L. Allen, J. H. Eberly, Optical Resonance and Two-level Atoms, Dover, New York, 1975

[13] C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Wiley, New York, 1977 | Zbl