Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a~spherically symmetric self-consistent approach
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 389-416
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the framework of a spherically symmetric self-consistent approach to two-time retarded spin–spin Green's functions, we develop the theory of a two-dimensional frustrated $J_1$-$J_2$-$J_3$ quantum $S=1/2$ antiferromagnet. We show that taking the damping of spin fluctuations into account is decisive in forming both the spin-liquid state and the state with long-range order. In particular, the existence of damping allows explaining the scaling behavior of the susceptibility $\chi(\mathbf{q},\omega)$ of the CuO$_2$ cuprate plane, the behavior of the spin spectrum in the two-plane case, and the occurrence of an incommensurable $\chi(\mathbf{q},\omega)$ peak. In the case of the complete $J_1$-$J_2$-$J_3$ model, in a single analytic approach, we find continuous transitions between three phases with long-range order (“checkerboard”, stripe, and helical $(q,q)$ phases) through the spin-liquid state. We obtain good agreement with cluster computations for the $J_1$-$J_2$-$J_3$ model and agreement with the neutron scattering data for the $J_1$-$J_2$ model of cuprates.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
high-temperature superconductivity, low-dimensional antiferromagnetism, spin liquid, quantum phase transition.
                    
                  
                
                
                @article{TMF_2011_168_3_a3,
     author = {A. F. Barabanov and A. V. Mikheenkov and A. V. Shvartsberg},
     title = {Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a~spherically symmetric self-consistent approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {389--416},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a3/}
}
                      
                      
                    TY - JOUR AU - A. F. Barabanov AU - A. V. Mikheenkov AU - A. V. Shvartsberg TI - Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a~spherically symmetric self-consistent approach JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 389 EP - 416 VL - 168 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a3/ LA - ru ID - TMF_2011_168_3_a3 ER -
%0 Journal Article %A A. F. Barabanov %A A. V. Mikheenkov %A A. V. Shvartsberg %T Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a~spherically symmetric self-consistent approach %J Teoretičeskaâ i matematičeskaâ fizika %D 2011 %P 389-416 %V 168 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a3/ %G ru %F TMF_2011_168_3_a3
A. F. Barabanov; A. V. Mikheenkov; A. V. Shvartsberg. Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a~spherically symmetric self-consistent approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 389-416. http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a3/
