Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a spherically symmetric self-consistent approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 389-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of a spherically symmetric self-consistent approach to two-time retarded spin–spin Green's functions, we develop the theory of a two-dimensional frustrated $J_1$-$J_2$-$J_3$ quantum $S=1/2$ antiferromagnet. We show that taking the damping of spin fluctuations into account is decisive in forming both the spin-liquid state and the state with long-range order. In particular, the existence of damping allows explaining the scaling behavior of the susceptibility $\chi(\mathbf{q},\omega)$ of the CuO$_2$ cuprate plane, the behavior of the spin spectrum in the two-plane case, and the occurrence of an incommensurable $\chi(\mathbf{q},\omega)$ peak. In the case of the complete $J_1$-$J_2$-$J_3$ model, in a single analytic approach, we find continuous transitions between three phases with long-range order (“checkerboard”, stripe, and helical $(q,q)$ phases) through the spin-liquid state. We obtain good agreement with cluster computations for the $J_1$-$J_2$-$J_3$ model and agreement with the neutron scattering data for the $J_1$-$J_2$ model of cuprates.
Keywords: high-temperature superconductivity, low-dimensional antiferromagnetism, spin liquid, quantum phase transition.
@article{TMF_2011_168_3_a3,
     author = {A. F. Barabanov and A. V. Mikheenkov and A. V. Shvartsberg},
     title = {Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a~spherically symmetric self-consistent approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {389--416},
     year = {2011},
     volume = {168},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a3/}
}
TY  - JOUR
AU  - A. F. Barabanov
AU  - A. V. Mikheenkov
AU  - A. V. Shvartsberg
TI  - Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a spherically symmetric self-consistent approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 389
EP  - 416
VL  - 168
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a3/
LA  - ru
ID  - TMF_2011_168_3_a3
ER  - 
%0 Journal Article
%A A. F. Barabanov
%A A. V. Mikheenkov
%A A. V. Shvartsberg
%T Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a spherically symmetric self-consistent approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 389-416
%V 168
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a3/
%G ru
%F TMF_2011_168_3_a3
A. F. Barabanov; A. V. Mikheenkov; A. V. Shvartsberg. Frustrated quantum two-dimensional $J_1$-$J_2$-$J_3$ antiferromagnet in a spherically symmetric self-consistent approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 389-416. http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a3/

[1] N. M. Plakida, High-Temperature Cuprate Superconductors: Experiment, Theory, and Applications, Springer Series in Solid-State Sciences, 166, Springer, Berlin, 2010 | DOI

[2] R. Melzi, P. Carretta, A. Lascialfari, M. Mambrini, M. Troyer, P. Millet, F. Mila, Phys. Rev. B, 85:6 (2000), 1318–1321 | DOI

[3] R. Nath, A. Tsirlin, H. Rosner, C. Geibell, Phys. Rev. B, 78:6 (2008), 64422, 7 pp., arXiv: 0803.3535 | DOI | MR

[4] A. Tsirlin, H. Rosner, Phys. Rev. B, 79:21 (2009), 214417, 13 pp., arXiv: 0901.4498 | DOI

[5] M. Eschrig, Advances in Physics, 55:1 (2006), 47–183, arXiv: cond-mat/0510286 | DOI

[6] J. M. Tranquada, “Neutron Scattering Studies of Antiferromagnetic Correlations in Cuprates”, Handbook of High-Temperature Superconductivity: Theory and Experiment, eds. J. R. Schrieffer, J. S. Brooks, Springer, New York, 2007, 257–298 ; arXiv: cond-mat/0512115 | DOI

[7] J. Kondo, K. Yamaji, Prog. Theor. Phys., 47:3 (1972), 807–818 | DOI

[8] H. Shimahara, S. Takada, J. Phys. Soc. Jpn., 60:7 (1991), 2394–2405 | DOI

[9] A. F. Barabanov, O. A. Starykh, J. Phys. Soc. Jpn., 61:2 (1992), 704–708 | DOI

[10] J. F. Annet, R. M. Martin, A. K. McMahan, S. Satpathy, Phys. Rev. B, 40:4 (1989), 2620–2623 | DOI

[11] M. Vojta, T. Ulbricht, Phys. Rev. Lett., 93:12 (2004), 127002, 4 pp., arXiv: cond-mat/0402377 | DOI

[12] A. F. Barabanov, V. M. Berezovskii, ZhETF, 106:4 (1994), 1156–1168

[13] A. F. Barabanov, L. A. Maksimov, A. V. Mikheenkov, “Spin polaron in the cuprate superconductor: Interpretation of the ARPES results”, Spectroscopy of High-Tc Superconductors. A Theoretical View, ed. N. M. Plakida, CRC Press, Boca Raton, 2003, 1–96

[14] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR

[15] A. F. Barabanov, A. V. Mikheyenkov, A. M. Belemuk, Phys. Lett. A, 365:5–6 (2007), 469–472 | DOI

[16] E. Manousakis, Rev. Mod. Phys., 63:1 (1991), 1–62 | DOI | MR

[17] A. F. Barabanov, L. A. Maksimov, Phys. Lett. A, 207:6 (1995), 390–396 | DOI

[18] Yu. A. Tserkovnikov, TMF, 7:2 (1971), 250–261 ; 49:2 (1981), 219–233 | DOI | DOI | MR

[19] N. M. Plakida, Phys. Lett. A, 43:6 (1973), 481–482 | DOI | MR

[20] H. Mori, Progr. Theor. Phys., 33:3 (1965), 423–455 | DOI | MR | Zbl

[21] I. Sega, P. Prelovšek, J. Bonča, Phys. Rev. B, 68:5 (2003), 054524, 6 pp., arXiv: cond-mat/0211090 | DOI

[22] P. Prelovsek, I. Sega, J. Bonca, Phys. Rev. Lett., 92:2 (2004), 027002, 4 pp., arXiv: cond-mat/0306366 | DOI

[23] I. A. Larionov, Phys. Rev. B, 69:21 (2004), 214525, 17 pp., arXiv: ; 72:9 (2005), 094505, 5 pp. cond-mat/0401514 | DOI | DOI

[24] A. Sherman, Phys. Lett. A, 337:4–6 (2005), 435–440, arXiv: cond-mat/0501040 | DOI | MR | Zbl

[25] A. Sherman, M. Schreiber, Phys. Rev. B, 65:13 (2002), 134520, 8 pp., arXiv: ; 68:9 (2003), 094519, 8 pp., arXiv: ; Eur. Phys. J. B, 32:2 (2003), 203–214, arXiv: cond-mat/0201526cond-mat/0307195cond-mat/0302356 | DOI | DOI | DOI

[26] B. P. Stojković, D. Pines, Phys. Rev. B, 55:13 (1997), 8576–8595, arXiv: cond-mat/9609137 | DOI

[27] M. Millis, H. Monien, D. Pines, Phys. Rev. B, 42:1 (1990), 167–178 | DOI

[28] A. V. Chubukov, D. K. Morr, Electronic structure of underdoped cuprates, arXiv: cond-mat/9701196

[29] S. Tyc, B. Halperin, Phys. Rev. B, 42:4 (1990), 2096–2115 | DOI

[30] A. A. Vladimirov, D. Ihle, N. M. Plakida, Phys. Rev. B, 80:10 (2009), 104425, 10 pp., arXiv: 0908.2557 | DOI

[31] A. M. Belemuk, A. F. Barabanov, L. A. Maksimov, ZhETF, 129:3 (2006), 493–506

[32] A. F. Barabanov, L. A. Maksimov, Pisma v ZhETF, 87:7 (2008), 433–437 | DOI

[33] A. V. Mikheenkov, A. F. Barabanov, ZhETF, 132:2 (2007), 392–405

[34] A. V. Mikheenkov, A. F. Barabanov, N. A. Kozlov, Phys. Lett. A, 354:4 (2006), 320–324 | DOI

[35] J. Richter, J. Schulenburg, Eur. Phys. J. B, 73:1 (2010), 117–124, arXiv: 0909.3723 | DOI

[36] M. A. Kastner, R. J. Birgeneau, G. Shirane, Y. Endoh, Rev. Mod. Phys., 70:3 (1998), 897–928 | DOI

[37] P. Bourges, “From Magnons to the Resonance Peak: Spin Dynamics in High-TC Superconducting Cuprates by Inelastic Neutron Scattering”, The Gap Symmetry and Fluctuations in High-Tc Superconductors, Proceedings of a NATO ASI held in Cargese (France, September 1–13, 1997), NATO Science Series B: Physics, 371, eds. J. Bok, G. Deutscher, D. Pavuna, S. A. Wolf, Plenum, New York, 2002, 349–371, arXiv: cond-mat/9901333 | DOI

[38] T. E. Mason, “Neutron Scattering Studies of Spin Fluctuations in High Temperature Superconductors”, Handbook on the Physics and Chemistry of Rare Earths: High-Temperature Superconductors – II, 31, eds. J. K. A. Gschneidner, L. Eyring, M. B. Maple, Elsevier, Amsterdam, 2001, 281–314 | DOI

[39] R. J. Birgeneau, C. Stock, J. M. Tranquada et al., J. Phys. Soc. Jpn., 75:11 (2006), 111003, 14 pp., arXiv: cond-mat/0604667 | DOI

[40] J. Lorenzana, G. Seibold, R. Coldea, Phys. Rev. B, 72:22 (2005), 224511, 15 pp., arXiv: cond-mat/0507131 | DOI

[41] S. M. Hayden, G. Aeppli, H. A. Mook, T. G. Perring, T. E. Mason, S.-W. Cheong, Z. Fisk, Phys. Rev. Lett., 76:8 (1996), 1344–1347, arXiv: cond-mat/9611179 | DOI

[42] S. M. Hayden, G. Aeppli, T. G. Perring et al., Phys. Rev. B, 54:10 (1996), R6905–R6908 | DOI

[43] B. Keimer, R. J. Birgeneau, A. Cassanho, Y. Endoh, R. W. Erwin, M. A. Kastner, G. Shirane, Phys. Rev. Lett., 67 (1991), 1930–1933 ; B. Keimer, N. Belk, R. J. Birgeneau et al., Phys. Rev. B, 46:21 (1992), 14034–14053 | DOI | DOI

[44] K. Kakurai, S. Shamoto, T. Kiyokura, M. Sato, J. M. Tranquada, G. Shirane, Phys. Rev. B, 48:5 (1993), 3485–3490 | DOI

[45] H. Hiraka, Y. Endoh, M. Fujita, Y. S. Lee, J. Kulda, A. Ivanov, R. J. Birgeneau, J. Phys. Soc. Jpn., 70:3 (2001), 853–858, arXiv: cond-mat/0104087 | DOI

[46] C. Stock, W. J. L. Buyers, R. Liang, D. Peets, Z. Tun, D. Bonn, W. N. Hardy, R. J. Birgeneau, Phys. Rev. B, 69:1 (2004), 014502, 22 pp., arXiv: cond-mat/0308168 | DOI | MR

[47] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S.-W. Cheong, Z. Fisk, Phys. Rev. Lett., 86:23 (2001), 5377–5380, arXiv: cond-mat/0006384 | DOI

[48] J. Igarashi, Phys. Rev. B, 46:17 (1992), 107063–10771 | DOI

[49] R. R. P. Singh, Phys. Rev. B, 39:13 (1989), 9760–9763 | DOI

[50] N. A. Kozlov, A. F. Barabanov, Pisma v ZhETF, 85:11 (2007), 673–678 | DOI | MR

[51] P. Sindzingre, N. Shannon, T. Momoi, J. Phys. Conf. Ser., 200:2 (2010), 022058, 4 pp., arXiv: 0907.4163 | DOI

[52] M. Mambrini, A. Lauchli, D. Poilblanc, F. Mila, Phys. Rev. B, 74:14 (2006), 144422, 11 pp., arXiv: cond-mat/0606776 | DOI

[53] A. Moreo, E. Dagotto, T. Jolicoeur, J. Riera, Phys. Rev. B, 42:10 (1990), 6283–6293 | DOI

[54] R. Rastelli, A. Tassi, Phys. Rev. B, 46:17 (1992), 10793–10799 | DOI