Diffusion and Laplacian transport
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 376-388
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study (stationary) Laplacian transport in the Dirichlet-to-Neumann formalism. Our main results concern a formal solution of the geometric inverse problem for localization and the form of absorbing domains. We restrict our analysis to one and two dimensions. We show that the latter case can be studied using the conformal mapping technique.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Laplacian transport, Dirichlet-to-Neumann operator
Mots-clés : conformal map.
                    
                  
                
                
                Mots-clés : conformal map.
@article{TMF_2011_168_3_a2,
     author = {I. Baydoun and V. A. Zagrebnov},
     title = {Diffusion and {Laplacian} transport},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {376--388},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a2/}
}
                      
                      
                    I. Baydoun; V. A. Zagrebnov. Diffusion and Laplacian transport. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 376-388. http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a2/
