Diffusion and Laplacian transport
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 376-388

Voir la notice de l'article provenant de la source Math-Net.Ru

We study (stationary) Laplacian transport in the Dirichlet-to-Neumann formalism. Our main results concern a formal solution of the geometric inverse problem for localization and the form of absorbing domains. We restrict our analysis to one and two dimensions. We show that the latter case can be studied using the conformal mapping technique.
Keywords: Laplacian transport, Dirichlet-to-Neumann operator
Mots-clés : conformal map.
@article{TMF_2011_168_3_a2,
     author = {I. Baydoun and V. A. Zagrebnov},
     title = {Diffusion and {Laplacian} transport},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {376--388},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a2/}
}
TY  - JOUR
AU  - I. Baydoun
AU  - V. A. Zagrebnov
TI  - Diffusion and Laplacian transport
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 376
EP  - 388
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a2/
LA  - ru
ID  - TMF_2011_168_3_a2
ER  - 
%0 Journal Article
%A I. Baydoun
%A V. A. Zagrebnov
%T Diffusion and Laplacian transport
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 376-388
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a2/
%G ru
%F TMF_2011_168_3_a2
I. Baydoun; V. A. Zagrebnov. Diffusion and Laplacian transport. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 376-388. http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a2/