The two-time Green's function and the diagram technique
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 518-535 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on constructing the equations of motion for the two-time Green's functions, we discuss calculating the dynamical spin susceptibility and correlation functions in the Heisenberg model. Using a Mori-type projection, we derive an exact Dyson equation with the self-energy operator in the form of a multiparticle Green's function. Calculating the self-energy operator in the mode-coupling approximation in the ferromagnetic phase, we reproduce the results of the temperature diagram technique, including the correct formula for low-temperature magnetization. We also consider calculating the spin fluctuation spectrum in the paramagnetic phase in the framework of the method of equations of motion for the relaxation function.
Keywords: dynamical spin susceptibility, Heisenberg model, retarded Green's function, advanced Green's function, Tyablikov decoupling, diagram technique for spin Green's functions.
@article{TMF_2011_168_3_a12,
     author = {N. M. Plakida},
     title = {The~two-time {Green's} function and the~diagram technique},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {518--535},
     year = {2011},
     volume = {168},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a12/}
}
TY  - JOUR
AU  - N. M. Plakida
TI  - The two-time Green's function and the diagram technique
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 518
EP  - 535
VL  - 168
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a12/
LA  - ru
ID  - TMF_2011_168_3_a12
ER  - 
%0 Journal Article
%A N. M. Plakida
%T The two-time Green's function and the diagram technique
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 518-535
%V 168
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a12/
%G ru
%F TMF_2011_168_3_a12
N. M. Plakida. The two-time Green's function and the diagram technique. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 3, pp. 518-535. http://geodesic.mathdoc.fr/item/TMF_2011_168_3_a12/

[1] N. N. Bogolyubov, S. V. Tyablikov, Dokl. AN SSSR, 126:1 (1959), 53–56 | MR | Zbl

[2] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, eds. D. N. Zubarev, Yu. G. Rudoi, Nauka, M., 1975 | MR

[3] D. N. Zubarev, UFN, 71:5 (1960), 71–116 ; Д. Н. Зубарев, В. Г. Морозов, Г. Рёпке, Статистическая механика неравновесных процессов, Физматлит, М., 2002 | DOI | MR | MR | Zbl

[4] S. V. Tyablikov, Ukr. matem. zhurn., 11 (1959), 287–294 | MR | Zbl

[5] F. Dyson, Phys. Rev., 102:5 (1956), 1217–1230 | DOI | MR | Zbl

[6] V. G. Vaks, A. I. Larkin, S. A. Pikin, ZhETF, 53:1 (1967), 281–299

[7] V. G. Vaks, A. I. Larkin, S. A. Pikin, ZhETF, 53:3 (1967), 1089–1106

[8] Yu. A. Izyumov, F. A. Kassan-Ogly, FMM, 30:2 (1970), 225–234

[9] V. G. Baryakhtar, V. N. Krivoruchko, D. A. Yablonskii, ZhETF, 85 (1983), 601–613

[10] Yu. A. Izyumov, F. A. Kassan-Ogly, Yu. N. Skryabin, Polevye metody v teorii ferromagnetizma, Nauka, M., 1974

[11] Yu. A. Izyumov, Yu. N. Skryabin, Statisticheskaya mekhanika magnitouporyadochennykh sistem, Nauka, M., 1987 | MR

[12] V. G. Baryakhtar, V. N. Krivoruchko, D. A. Yablonskii, Funktsii Grina v teorii magnetizma, Naukova dumka, Kiev, 1984 | MR

[13] Yu. A. Tserkovnikov, TMF, 7:2 (1971), 250–261 | DOI

[14] Yu. G. Rudoi, Yu. A. Tserkovnikov, TMF, 14:1 (1973), 102–122 | DOI

[15] Yu. G. Rudoi, Yu. A. Tserkovnikov, TMF, 15:3 (1973), 388–406 | DOI

[16] H. Mori, Progr. Theor. Phys., 33:3 (1965), 423–455 ; 34:3, 399–416 | DOI | Zbl | DOI | MR

[17] N. M. Plakida, Phys. Lett. A., 43:6 (1973), 481–482 | DOI | MR

[18] N. M. Plakida, P. R. Rusek, Nikzotemperaturnaya namagnichennost geizenbergovskogo ferromagnetika, Preprint OIYaI R4-8032, OIYaI, Dubna, 1974

[19] Yu. A. Tserkovnikov, TMF, 49:2 (1981), 219–233 | DOI | MR

[20] Yu. A. Tserkovnikov, TMF, 52:1 (1982), 147–160 | DOI

[21] Yu. A. Tserkovnikov, TMF, 154:1 (2008), 197–206 | DOI | MR | Zbl

[22] A. A. Vladimirov, D. Ile, N. M. Plakida, TMF, 145:2 (2005), 240–255 | DOI | MR | Zbl

[23] A. A. Vladimirov, D. Ihle, N. M. Plakida, Phys. Rev. B, 80:10 (2009), 104425, 12 pp. | DOI

[24] A. A. Vladimirov, D. Ihle, N. M. Plakida, Phys. Rev. B, 83 (2011), 024411 | DOI

[25] Yu. A. Izyumov, B. M. Letfulov, J. Phys.: Condens. Matter, 3:28 (1991), 5373–5391 | DOI

[26] N. M. Plakida, High-Temperature Cuprate Superconductors. Experiment, Theory, and Applications, Springer Series in Solid-State Sciences, 166, Springer, Heidelberg, Berlin, 2010 | DOI

[27] D. Forster, Gidrodinamicheskie fluktuatsii, narushennaya simmetriya i korrelyatsionnye funktsii, Atomizdat, M., 1980

[28] V. P. Kalashnikov, TMF, 34:3 (1978), 412–425 | DOI

[29] M. Ichiyanagi, J. Phys. Soc. Jpn., 32:3 (1972), 604–609 | DOI | MR | Zbl

[30] I. Sega, P. Prelošek, J. Bonča, Phys. Rev. B, 68:5 (2003), 054524, 6 pp. | DOI

[31] H. Shimahara, S. Takada, J. Phys. Soc. Jpn., 60:7 (1991), 2394–2405 | DOI

[32] S. Winterfeldt, D. Ihle, Phys. Rev. B, 59:9 (1999), 6010–6012 | DOI

[33] F. Mancini, A. Avella, Advances in Physics, 53:5–6 (2004), 537–768 | DOI

[34] N. M. Plakida, V. S. Oudovenko, Phys. Rev. B, 59:18 (1999), 11949–11961 | DOI

[35] N. M. Plakida, L. Anton, S. Adam, G. Adam, ZhETF, 124:2 (2003), 367–378

[36] N. M. Plakida, “Metod dvukhvremennykh funktsii Grina v teorii angarmonicheskikh kristallov”, Statisticheskaya fizika i kvantovaya teoriya polya, ed. N. N. Bogolyubov, Nauka, M., 1973, 205–240 | MR

[37] N. M. Plakida, FTT, 11:3 (1969), 700–707