Laplace-type exact asymptotic formulas for the~Bogoliubov Gaussian measure
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 299-340
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain new asymptotic formulas for two classes of Laplace-type functional integrals with the Bogoliubov measure. The principal functionals are the $L^p$ functionals with $0$ and two functionals of the exact-upper-bound type. In particular, we prove theorems on the Laplace-type asymptotic behavior for the moments of the $L^p$ norm of the Bogoliubov Gaussian process when the moment order becomes infinitely large. We establish the existence of the threshold value $p_0=2+4\pi^2/\beta^2\omega^2$, where $\beta>0$ is the inverse temperature and $\omega>0$ is the harmonic oscillator eigenfrequency. We prove that the asymptotic behavior under investigation differs for $0$ and $p>p_0$. We obtain similar asymptotic results for large deviations for the Bogoliubov measure. We establish the scaling property of the Bogoliubov process, which allows reducing the number of independent parameters.
Keywords:
Bogoliubov measure, Laplace method in Banach space, large deviation principle, action functional.
@article{TMF_2011_168_2_a8,
author = {V. R. Fatalov},
title = {Laplace-type exact asymptotic formulas for {the~Bogoliubov} {Gaussian} measure},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {299--340},
publisher = {mathdoc},
volume = {168},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a8/}
}
TY - JOUR AU - V. R. Fatalov TI - Laplace-type exact asymptotic formulas for the~Bogoliubov Gaussian measure JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 299 EP - 340 VL - 168 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a8/ LA - ru ID - TMF_2011_168_2_a8 ER -
V. R. Fatalov. Laplace-type exact asymptotic formulas for the~Bogoliubov Gaussian measure. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 299-340. http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a8/