Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 299-340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain new asymptotic formulas for two classes of Laplace-type functional integrals with the Bogoliubov measure. The principal functionals are the $L^p$ functionals with $0 and two functionals of the exact-upper-bound type. In particular, we prove theorems on the Laplace-type asymptotic behavior for the moments of the $L^p$ norm of the Bogoliubov Gaussian process when the moment order becomes infinitely large. We establish the existence of the threshold value $p_0=2+4\pi^2/\beta^2\omega^2$, where $\beta>0$ is the inverse temperature and $\omega>0$ is the harmonic oscillator eigenfrequency. We prove that the asymptotic behavior under investigation differs for $0 and $p>p_0$. We obtain similar asymptotic results for large deviations for the Bogoliubov measure. We establish the scaling property of the Bogoliubov process, which allows reducing the number of independent parameters.
Keywords: Bogoliubov measure, Laplace method in Banach space, large deviation principle, action functional.
@article{TMF_2011_168_2_a8,
     author = {V. R. Fatalov},
     title = {Laplace-type exact asymptotic formulas for {the~Bogoliubov} {Gaussian} measure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {299--340},
     year = {2011},
     volume = {168},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a8/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 299
EP  - 340
VL  - 168
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a8/
LA  - ru
ID  - TMF_2011_168_2_a8
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 299-340
%V 168
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a8/
%G ru
%F TMF_2011_168_2_a8
V. R. Fatalov. Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 299-340. http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a8/

[1] R. Feinman, “Prostranstvenno-vremennoi pokhod k nerelyativistskoi kvantovoi mekhanike”, Voprosy prichinnosti v kvantovoi mekhanike, eds. Ya. P. Terletskii, A. A. Gusev, IL, M., 1955, 167–207 | MR

[2] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR | Zbl

[3] S. Albeverio et al. (eds.), Proc. International Colloquium (Marseille, May 1978), Lect. Notes Phys., 106, Springer, Berlin, Heidelberg, New York, 1979 | DOI | MR | Zbl

[4] F. W. Wiegel, Phys. Rep., 16:2 (1975), 57–114 | DOI | MR

[5] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[6] B. Simon, Functional Integration and Quantum Physics, Lect. Notes Pure Appl. Math., 86, Academic Press, New York, London, 1979 | MR | Zbl

[7] L. S. Schulman, Techniques and applications of path integration, Wiley, New York, 1981 | MR | Zbl

[8] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem kontinualnykh integralov, Mir, M., 1984 | MR

[9] G. W. Johnson, M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus, Clarendon Press, Oxford, 2000 | MR | Zbl

[10] P. L. Rubin, TMF, 156:2 (2008), 184–188 | DOI | MR | Zbl

[11] L. A. Yanovich, Priblizhennoe vychislenie kontinualnykh integralov po gaussovym meram, Nauka i tekhnika, Minsk, 1976 | MR | Zbl

[12] I. M. Kovalchik, L. A. Yanovich, Obobschennyi vinerovskii integral i nekotorye ego prilozheniya, Nauka i tekhnika, Minsk, 1989 | MR

[13] R. S. Ellis, J. S. Rosen, Comm. Math. Phys, 82:2 (1981), 153–181 | DOI | MR | Zbl

[14] R. S. Ellis, J. S. Rosen, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 | DOI | MR | Zbl

[15] V. I. Piterbarg, Asimptoticheskie metody v teorii gaussovskikh sluchainykh protsessov i polei, Izd-vo MGU, M., 1988 | MR | Zbl

[16] V. I. Piterbarg, V. R. Fatalov, UMN, 50:6 (1995), 57–150 | DOI | MR | Zbl

[17] V. R. Fatalov, “Tochnye asimptotiki vinerovskikh integralov tipa Laplasa dlya $L^p$-funktsionalov”, Izv. RAN. Ser. matem., 74:1 (2010), 197–224 | DOI | MR | Zbl

[18] N. N. Bogolyubov, Dokl. AN SSSR, 99:2 (1954), 225–226 ; Собр. научных трудов, т. 9, Квантовая теория поля, ред. А. Д. Суханов, Наука, М., 2007, 245–247 | MR | Zbl | Zbl

[19] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Aspekty teorii polyarona, Fizmatlit, M., 2004; | Zbl

[20] D. P. Sankovich, TMF, 119:2 (1999), 345–352 | DOI | MR | Zbl

[21] D. P. Sankovich, TMF, 126:1 (2001), 149–163 | DOI | MR | Zbl

[22] D. P. Sankovich, TMF, 127:1 (2001), 125–142 | DOI | MR | Zbl

[23] D. P. Sankovich, “Funktsionalnyi integral Bogolyubova”, Nelineinaya dinamika, Sbornik statei, Tr. MIAN, 251, Nauka, M., 2005, 223–256 | MR | Zbl

[24] G. Kramer, M. Lidbetter, Statsionarnye sluchainye protsessy, Mir, M., 1969 | MR | Zbl

[25] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971 | MR | Zbl

[26] M. A. Lifshits, Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995 | Zbl

[27] Kh.-S. Go, Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979 | Zbl

[28] V. I. Bogachev, Gaussovskie mery, Fizmatlit, M., 1997 | MR | Zbl

[29] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[30] V. R. Fatalov, TMF, 157:2 (2008), 286–308 | DOI | MR | Zbl

[31] E. Brézin, J. C. Le Guillou, J. Zinn-Justin, Phys. Rev. D, 15:6 (1997), 1544–1557 | DOI

[32] V. R. Fatalov, Problemy pered. informats., 42:1 (2006), 52–71 | MR | Zbl

[33] V. R. Fatalov, Problemy pered. informats., 46:1 (2010), 68–93 | MR | Zbl

[34] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[35] N. Bleistein, R. A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart and Winston, New York, 1975 | MR | Zbl

[36] K. W. Breitung, Asymptotic Approximations for Probability Integrals, Lect. Notes Math., 1592, Springer, Berlin, 1994 | DOI | MR | Zbl

[37] V. R. Fatalov, “Metod Laplasa dlya gaussovskikh mer v banakhovom prostranstve (mnogoobrazie tochek minimuma) s primeneniem k statistike Vatsona”, TVP, v pechati

[38] M. Kats, Veroyatnost i smezhnye voprosy v fizike, Nauka, M., 1965 | Zbl

[39] A. N. Shiryaev, Veroyatnost – 1, Izd-vo MTsNMO, M., 2004 | MR | Zbl

[40] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[41] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[42] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[43] V. R. Fatalov, “Momenty $L^p$-funktsionalov ot gaussovskikh protsessov: tochnye asimptotiki”, v pechati

[44] V. R. Fatalov, Izvestiya NAN Armenii. Matematika, 27:5 (1992), 36–50 | MR | Zbl

[45] S. R. S. Varadhan, Commun. Pure Appl. Math., 19:3 (1966), 261–286 | DOI | MR | Zbl

[46] S. R. S. Varadhan, Ann. Probab., 36:2 (2008), 397–419 | DOI | MR | Zbl

[47] J.-D. Deuschel, D. W. Stroock, Large Deviations, Pure Appl. Math., 137, Acad. Press, Boston, MA, 1989 | MR | Zbl

[48] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Appl. Math., 38, Springer, New York, 1998 | MR | Zbl

[49] J. A. Bucklew, Large Deviation Techniques in Decision, Simulation and Estimation, Wiley, New York, 1990 | MR

[50] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR

[51] C.-E. Pfister, “Thermodynamical aspects of classical lattice systems”, In and Out of Equilibrium, 4th Brazilian school of probability (Mambucaba, Brazil, August 14–19, 2000), Progr. Probab., 51, ed. V. Sidoravicius, Birkhäuser, Boston, 2002, 393–472 | MR | Zbl

[52] E. Olivieri, M. E. Vares, Large Deviations and Metastability, Encyclopedia of Mathematics and its Applications, 100, Cambridge Univ. Press, Cambridge, 2005 | MR

[53] R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Springer, Berlin, 2006 | MR | Zbl

[54] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1961 | MR

[55] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, URSS, M., 2007

[56] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR

[57] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR | Zbl

[58] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR

[59] F. Riss, B. Sëkefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[60] A. Pich, Operatornye idealy, Mir, M., 1982 | MR

[61] R. J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, IMS Lect. Notes, 12, Hayward, CA, IMS, 1990 | MR | Zbl