Exact $S$-wave solution of the Schrödinger equation for three new potentials using the transformation method
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 291-298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the extended transformation method to a non-power-law potential to generate a set of exactly solvable quantum systems in spaces of any dimensions. We derive exact analytic solutions of the Schrödinger equations with an exactly solvable non-power-law potential. For the transformed potentials obtained as a result, we calculate the quantized bound-state energy spectra and the corresponding wave functions.
Keywords: Schrödinger equation, extended transformation, exactly solvable potential.
@article{TMF_2011_168_2_a7,
     author = {N. Saikia and S. A. S. Ahmed},
     title = {Exact $S$-wave solution of {the~Schr\"odinger} equation for three new potentials using the~transformation method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--298},
     year = {2011},
     volume = {168},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a7/}
}
TY  - JOUR
AU  - N. Saikia
AU  - S. A. S. Ahmed
TI  - Exact $S$-wave solution of the Schrödinger equation for three new potentials using the transformation method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 291
EP  - 298
VL  - 168
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a7/
LA  - ru
ID  - TMF_2011_168_2_a7
ER  - 
%0 Journal Article
%A N. Saikia
%A S. A. S. Ahmed
%T Exact $S$-wave solution of the Schrödinger equation for three new potentials using the transformation method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 291-298
%V 168
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a7/
%G ru
%F TMF_2011_168_2_a7
N. Saikia; S. A. S. Ahmed. Exact $S$-wave solution of the Schrödinger equation for three new potentials using the transformation method. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 291-298. http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a7/

[1] P. M. Morse, Phys. Rev., 34:1 (1929), 57–64 | DOI | Zbl

[2] N. Rosen, P. M. Morse, Phys. Rev., 42:2 (1932), 210–217 | DOI | Zbl

[3] G. P. Flessas, Phys. Lett. A, 72:4–5 (1979), 289–290 | DOI | MR

[4] F. Steiner, Phys. Lett. A, 106:8 (1984), 363–367 | DOI | MR

[5] R. Dutt, A. Khare, U. P. Sukhatme, Amer. J. Phys., 56:2 (1988), 163–168 | DOI

[6] A. de Souza Dutra, Phys. Lett. A, 131:6 (1988), 319–321 | DOI | MR

[7] S. A. S. Ahmed, Internat. J. Theoret. Phys., 36:8 (1977), 1893–1905 | DOI | MR

[8] N. Saikia, S. A. S. Ahmed, Phys. Scr., 81:3 (2010), 035006, 6 pp. | DOI | MR | Zbl

[9] S. A. S. Ahmed, L. Buragohain, N. Saikia, Internat. J. Pure Appl. Phys., 4:3 (2008), 233–250

[10] N. Saikia, S. A. S. Ahmed, Latin.-Amer. J. Phys. Educ., 4:1 (2010), 61–66

[11] S. A. S. Ahmed, L. Buragohain, Phys. Scr., 80:2 (2009), 025004, 6 pp. | DOI | Zbl

[12] S. A. S. Ahmed, B. C. Borah, D. Sharma, Eur. Phys. J. D, 17:1 (2001), 5–11 | DOI | MR

[13] S. A. S. Ahmed, L. Buragohain, Latin.-Amer. J. Phys. Educ., 3:3 (2009), 573–577