The $SU(3)$ symmetry and macroscopic dynamics of magnets with spin $s=1$
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 245-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the Hamiltonian approach, we derive nonlinear dynamic equations for magnetic media with spin $s=1$. We introduce two types of magnetic exchange Hamiltonians corresponding to the Casimir invariants of the $SU(3)$ group. We find the spectra of spin and quadrupole waves corresponding to the states with different symmetries under the time reversal transformation. We consider the effect of dissipative processes and find relaxation fluxes caused by the exchange symmetry of the magnetic Hamiltonian.
Keywords: spin, dynamics, Hamiltonian approach, magnon momentum, collective excitation spectrum, relaxation.
Mots-clés : quadrupole matrix, Poisson bracket
@article{TMF_2011_168_2_a4,
     author = {M. Yu. Kovalevsky},
     title = {The~$SU(3)$ symmetry and macroscopic dynamics of magnets with spin $s=1$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--260},
     year = {2011},
     volume = {168},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a4/}
}
TY  - JOUR
AU  - M. Yu. Kovalevsky
TI  - The $SU(3)$ symmetry and macroscopic dynamics of magnets with spin $s=1$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 245
EP  - 260
VL  - 168
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a4/
LA  - ru
ID  - TMF_2011_168_2_a4
ER  - 
%0 Journal Article
%A M. Yu. Kovalevsky
%T The $SU(3)$ symmetry and macroscopic dynamics of magnets with spin $s=1$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 245-260
%V 168
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a4/
%G ru
%F TMF_2011_168_2_a4
M. Yu. Kovalevsky. The $SU(3)$ symmetry and macroscopic dynamics of magnets with spin $s=1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a4/

[1] L. D. Landau, E. M. Lifshitz, Phys. Z. Sowjetunion, 8 (1935), 153–169 | Zbl

[2] A. I. Akhiezer, V. G. Baryakhtar, S. V. Peletminskii, Spinovye volny, Nauka, M., 1967 | MR

[3] E. A. Turov, A. V. Kolchanov, V. V. Menshenin, I. F. Mirsaev, V. V. Nikolaev, Simmetriya i fizicheskie svoistva antiferromagnetikov, Fizmatlit, M., 2001

[4] E. L. Nagaev, Magnetiki so slozhnymi obmennymi vzaimodeistviyami, Nauka, M., 1988

[5] M. Nauciel-Bloch, G. Sarma, A. Castets, Phys. Rev. B, 5:11 (1972), 4603–4609 | DOI

[6] A. F. Andreev, I. A. Grischuk, ZhETF, 87:2 (1984), 467–475

[7] V. S. Ostrovskii, ZhETF, 91:5 (1986), 1690–1701

[8] F. Zhou, M. Snoek, Spin singlet Mott states and evidence for spin singlet quantum condensates of spin-one bosons in lattices, arXiv: cond-mat/0306697 | MR

[9] Ming-Shien Chang, Qishu Qin, Wenxian Zhang, Li You, M. S. Chapman, Nature Physics, 1:1 (2005), 111–116, arXiv: cond-mat/0509341 | DOI

[10] R. Barnett, A. Turner, E. Demler, Classifying novel phases of spinor atoms, arXiv: cond-mat/0607253

[11] T. Kuwamoto, M. Araki, T. Eno, T. Hirano, Phys. Rev. A, 69 (2004), 063604, 6 pp. | DOI

[12] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975 | MR | Zbl

[13] L. Bidenkharn, Dzh. Lauk, Uglovoi moment v kvantovoi fizike, v. 1, 2, Mir, M., 1984 | MR | Zbl

[14] F. P. Onufrieva, ZhETF, 80:6 (1981), 2372–2379

[15] G. Fáth, J. Sólyom, Phys. Rev. B, 51:6 (1995), 3620–3625, arXiv: cond-mat/9501108 | DOI

[16] B. A. Ivanov, A. K. Kolezhuk, Phys. Rev. B, 68:5 (2003), 052401, 4 pp., arXiv: cond-mat/0205207 | DOI

[17] B. A. Ivanov, R. S. Khymyn, A. K. Kolezhuk, Phys. Rev. Lett., 100:4 (2008), 047203, 4 pp., arXiv: arXiv:0710.4557 | DOI

[18] V. I. Butrim, B. A. Ivanov, A. S. Kuznetsov, Pisma v ZhETF, 92:3 (2010), 172–176 | DOI

[19] N. Papanicolaou, Nucl. Phys. B, 305:3 (1988), 367–395 | DOI | MR

[20] A. A. Isaev, M. Yu. Kovalevskii, S. V. Peletminskii, Fizika metallov i metallovedenie, 77:4 (1994), 20–28

[21] J. Bernatska, P. Holod, J. Phys. A, 42:7 (2009), 075401, 14 pp. | DOI | MR | Zbl

[22] B. I. Halperin, P. C. Hohenberg, Phys. Rev., 188:2 (1969), 898–918 | DOI

[23] Yu. P. Bliokh, D. V. Volkov, A. A. Zheltukhin, FTT, 13:6 (1971), 1668–1678 | MR

[24] A. F. Andreev, ZhETF, 74:2 (1978), 786–797

[25] I. E. Dzyaloshinskii, G. E. Volovick, Ann. Phys., 125:1 (1980), 67–97 | DOI | MR

[26] M. Yu. Kovalevskii, S. V. Peletminskii, TMF, 100:1 (1994), 59–74

[27] D. A. Demyanenko, M. Yu. Kovalevskii, Fizika nizkikh temperatur, 33:11 (2007), 1271–1281

[28] T. Holstein, H. Primakoff, Phys. Rev., 58:12 (1940), 1098–1113 | DOI | Zbl

[29] L. I. Plimak, C. Weib, R. Walser, W. P. Schleich, Opt. Commun., 264:2 (2006), 311–320, arXiv: cond-mat/0603204 | DOI

[30] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR | Zbl

[31] M. Yu. Kovalevskii, S. V. Peletminskii, Statisticheskaya mekhanika kvantovykh zhidkostei i kristallov, Fizmatlit, M., 2006

[32] A. I. Akhiezer, S. V. Peletminskii, Metody statisticheskoi fiziki, Nauka, M., 1977 | MR

[33] B. A. Ivanov, R. S. Khimin, Fizika nizkikh temperatur, 34:3 (2008), 236–247

[34] M. Yu. Kovalevskii, V. T. Matskevich, A. Ya. Razumnyi, TMF, 158:2 (2009), 277–291 | DOI | MR | Zbl