Nonlinear orientational dynamics of a molecular chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 227-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the nonlinear rotational dynamics of a molecular chain with quadrupole interaction in both the discrete and the continuous cases. Based on a system of nonlinear differential–difference equations, we obtain approximate equations describing the chain excitations and preserving the initial symmetry. We introduce an effective potential and normal coordinates, using which allows decoupling the system into linear and nonlinear parts. As a result of a strong anisotropy of the potential, narrow “valleys” occur in the angle plane. Motion along a valley corresponds to a softer interaction (nonlinear equations). Linear equations describe motion across a valley (hard interaction). We consider cases where the derived nonlinear equations reduce to the sine-Gordon equation. We find integrals of motion and exact solutions of our approximate equations. We uniformly describe the energy interval encompassing the domains of order, of orientational melting, and of rotational motion of the molecules in the chain.
Keywords: nonlinear dynamics, nonlinear oscillation, nonlinear wave, molecular crystal
Mots-clés : phonon, normal mode, sine-Gordon equation, solid–liquid transition.
@article{TMF_2011_168_2_a3,
     author = {V. A. Lykakh and E. S. Syrkin},
     title = {Nonlinear orientational dynamics of a~molecular chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {227--244},
     year = {2011},
     volume = {168},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a3/}
}
TY  - JOUR
AU  - V. A. Lykakh
AU  - E. S. Syrkin
TI  - Nonlinear orientational dynamics of a molecular chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 227
EP  - 244
VL  - 168
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a3/
LA  - ru
ID  - TMF_2011_168_2_a3
ER  - 
%0 Journal Article
%A V. A. Lykakh
%A E. S. Syrkin
%T Nonlinear orientational dynamics of a molecular chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 227-244
%V 168
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a3/
%G ru
%F TMF_2011_168_2_a3
V. A. Lykakh; E. S. Syrkin. Nonlinear orientational dynamics of a molecular chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 227-244. http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a3/

[1] J.-P. Farges(ed.), Organic Conductors: Fundamentals and Applications, Dekker, New York, 1994; G. Hadziioannou, P. F. van Hutten (eds.), Semiconducting Polymers: Chemistry, Physics and Engineerings, Wiley, Weinheim, 2005 | DOI

[2] V. G. Manzhelii, Yu. A. Freiman, Physics of Cryocrystals, ed. A. A. Maradudin, AIP Press, Woodbury, 1996; Б. И. Веркин, А. Ф. Прихотько (ред.), Криокристаллы, Наукова думка, Киев, 1983

[3] S. Lepri, R. Livi, A. Politi, Phys. Rep., 377:1 (2003), 1–80, arXiv: cond-mat/0112193 | DOI | MR

[4] D. Marx, H. Wiechert, Surface Properties, Adv. Chem. Phys., 95, eds. I. Prigogine, S. A. Rice, Wiley, 2007, 213–394 | DOI

[5] M. Born, Khuang Kun, Dinamicheskaya teoriya kristallicheskikh reshetok, IL, M., 1958 | Zbl

[6] A. M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Wiley-VCH, Berlin, New York, 1999 | Zbl

[7] M. Toda, Teoriya nelineinykh reshetok, M., Mir, 1984 | MR | Zbl

[8] V. A. Lykah, E. S. Syrkin, Phys. status solidi (c), 1:11 (2004), 3052–3056 | DOI

[9] V. A. Lykah, E. S. Syrkin, Physics of Low-Dimensional Structures, 7/8 (2004), 103–116

[10] V. A. Lykah, E. S. Syrkin, Central Eur. J. Phys., 3:1 (2005), 61–68 | DOI

[11] V. A. Lykah, E. S. Syrkin, J. Phys.: Condens. Matter, 20:22 (2008), 224022 | DOI

[12] A. Hubert, R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, Springer, Berlin, New York, 1998

[13] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983

[14] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[15] R. Rajaraman, Solitons and Instantons, North-Holland Publ. Co., Amsterdam, New York, 1982 | MR | Zbl

[16] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1984 | MR

[17] O. M. Braun, Yu. S. Kivshar, Model Frenkelya-Kontorovoi. Kontseptsii, metody, prilozheniya, ed. A. V. Savin, Fizmatlit, M., 2008 | MR | Zbl

[18] A. N. Tikhonov, A. B. Vasileva, A. G. Sveshnikov, Differentsialnye uravneniya, Nauka, M., 1985 | MR | Zbl

[19] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[20] Yu. A. Kosevich, E. S. Syrkin, A. M. Kosevich, Progr. Surface Science, 55:1 (1997), 59–111 | DOI