Solutions of two-dimensional Schrödinger-type equations in a magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 219-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the method of dressing by a linear operator of general form to construct new solutions of Schrödinger-type two-dimensional equations in a magnetic field. In the case of a nonunit metric, we integrate the class of solutions that admit a variable separation before dressing. In particular, we show that the ratio of the coefficients of the differential operators in the unit metric case satisfies the Hopf equation. We establish a relation between the solutions of the two-dimensional eikonal equation with the unit right-hand side and solutions of the Hopf equation.
Keywords: dressing method, quantum operators, Hopf equation
Mots-clés : eikonal equation.
@article{TMF_2011_168_2_a2,
     author = {V. G. Marikhin},
     title = {Solutions of two-dimensional {Schr\"odinger-type} equations in a~magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {219--226},
     year = {2011},
     volume = {168},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a2/}
}
TY  - JOUR
AU  - V. G. Marikhin
TI  - Solutions of two-dimensional Schrödinger-type equations in a magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 219
EP  - 226
VL  - 168
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a2/
LA  - ru
ID  - TMF_2011_168_2_a2
ER  - 
%0 Journal Article
%A V. G. Marikhin
%T Solutions of two-dimensional Schrödinger-type equations in a magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 219-226
%V 168
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a2/
%G ru
%F TMF_2011_168_2_a2
V. G. Marikhin. Solutions of two-dimensional Schrödinger-type equations in a magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 219-226. http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a2/

[1] S. P. Novikov, A. P. Veselov, “Exactly solvable 2-dimensional Schrödinger opeators and Laplace transformations”, Solitons, Geometry and Topology: On the Crossroads, Amer. Math. Soc. Transl. Ser. 2, 179, eds. V. M. Buchstaber, S. P. Novikov, AMS, Providence, RI, 1997, 109–132, arXiv: math-ph/0003008 | MR | Zbl

[2] E. V. Ferapontov, A. P. Veselov, J. Math. Phys., 42:2 (2001), 590–607, arXiv: math-ph/0007034 | DOI | MR | Zbl

[3] G. Darboux, Lecons sur la Théorie Générale des Surfaces et les Applications Geométriques du Calcul Infinitésimal. Première Partie. Généralités. Coordonnées Curvilignes. Surfaces minima, Réimpression de la deuxième edition de 1914, Chelsea, New York, 1972 | MR | Zbl

[4] A. B. Shabat, TMF, 103:1 (1995), 170–175 | DOI | MR | Zbl

[5] I. A. Taimanov, S. P. Tsarev, TMF, 157:2 (2008), 188–207, arXiv: 0801.3225 | DOI | MR | Zbl

[6] V. G. Marikhin, TMF, 161:3 (2009), 327–331 | DOI | MR | Zbl

[7] A. P. Veselov, A. B. Shabat, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | MR | Zbl

[8] M. A. Skvortsov, P. M. Ostrovskii, Pisma v ZhETF, 85:1 (2007), 79–83, arXiv: cond-mat/0604631 | DOI