The $p$-adic quantum differential
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 212-218
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose the Fredholm module structure on the space $L_2(\mathbb P^1(\mathbb Q_p))$. We study the properties of the corresponding quantum Connes differential.
Keywords:
$p$-adic analysis, quantum differential.
Mots-clés : Connes quantization
Mots-clés : Connes quantization
@article{TMF_2011_168_2_a1,
author = {E. I. Zelenov},
title = {The~$p$-adic quantum differential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {212--218},
year = {2011},
volume = {168},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a1/}
}
E. I. Zelenov. The $p$-adic quantum differential. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 212-218. http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a1/
[1] P. Julg, A. Valette, J. Funct. Anal., 58:2 (1984), 194–215 | DOI | MR | Zbl
[2] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[3] J.-P. Serre, Trees, Springer, Berlin, Heidelberg, New York, 1980 | MR | Zbl
[4] Yu. I. Manin, “$p$-Adicheskie avtomorfnye funktsii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 3, VINITI, M., 1974, 5–92 | DOI | MR | Zbl