The $p$-adic quantum differential
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 212-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose the Fredholm module structure on the space $L_2(\mathbb P^1(\mathbb Q_p))$. We study the properties of the corresponding quantum Connes differential.
Keywords: $p$-adic analysis, quantum differential.
Mots-clés : Connes quantization
@article{TMF_2011_168_2_a1,
     author = {E. I. Zelenov},
     title = {The~$p$-adic quantum differential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {212--218},
     year = {2011},
     volume = {168},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a1/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - The $p$-adic quantum differential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 212
EP  - 218
VL  - 168
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a1/
LA  - ru
ID  - TMF_2011_168_2_a1
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T The $p$-adic quantum differential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 212-218
%V 168
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a1/
%G ru
%F TMF_2011_168_2_a1
E. I. Zelenov. The $p$-adic quantum differential. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 212-218. http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a1/

[1] P. Julg, A. Valette, J. Funct. Anal., 58:2 (1984), 194–215 | DOI | MR | Zbl

[2] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[3] J.-P. Serre, Trees, Springer, Berlin, Heidelberg, New York, 1980 | MR | Zbl

[4] Yu. I. Manin, “$p$-Adicheskie avtomorfnye funktsii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 3, VINITI, M., 1974, 5–92 | DOI | MR | Zbl