Symmetries and conservation laws of difference equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 195-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Within the formalism of difference jets, we develop an algebro-geometric analysis of systems of difference equations on multidimensional integer lattices and study their symmetries and conservation laws.
Keywords: lattice, difference equation, symmetry, conservation law.
@article{TMF_2011_168_2_a0,
     author = {V. V. Zharinov},
     title = {Symmetries and conservation laws of difference equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {195--211},
     year = {2011},
     volume = {168},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Symmetries and conservation laws of difference equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 195
EP  - 211
VL  - 168
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a0/
LA  - ru
ID  - TMF_2011_168_2_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Symmetries and conservation laws of difference equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 195-211
%V 168
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a0/
%G ru
%F TMF_2011_168_2_a0
V. V. Zharinov. Symmetries and conservation laws of difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 2, pp. 195-211. http://geodesic.mathdoc.fr/item/TMF_2011_168_2_a0/

[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | MR | Zbl

[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[3] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | MR | Zbl

[4] A. M. Vinogradov, I. S. Krasilschik, V. V. Lychagin, Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986 | MR | Zbl

[5] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[6] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, Ser. Sov. East Eur. Math., 9, World Sci., Singapore, 1992 | MR | Zbl

[7] A. M. Vinogradov, I. S. Krasilschik (red.), Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997 | MR | Zbl

[8] B. Kupershmidt, Discrete Lax equations and differential-difference calculus, Astérisque, 123, SMF, Paris, 1985 | MR | Zbl

[9] Ü. Göktaş, W. Hereman, Physica D, 123:1–4 (1998), 425–436, arXiv: solv-int/9801023 | DOI | MR | Zbl

[10] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | MR | Zbl

[11] E. L. Mansfield, P. E. Hydon, “On a variational complex for difference equations”, The Geometrical Study of Differential equations, Contemp. Math., 285, eds. J. A. Leslie, T. P. Robart, AMS, Providence, RI, 2002, 121–129 | DOI | MR | Zbl

[12] M. S. Hickman, W. A. Hereman, Proc. Roy. Soc. A, 459:2039 (2003), 2705–2729 | DOI | MR | Zbl

[13] P. E. Hydon, E. L. Mansfield, Found. Comput. Math., 4:2 (2004), 187–217 | DOI | MR | Zbl

[14] W. Hereman, M. Colagrosso, R. Sayers, A. Ringler, B. Deconinck, M. Nivala, M. Hickman, “Continuous and discrete homotopy operators and the computation of conservation laws”, Differential Equations With Symbolic Computation, Trends Math., eds. D. Wang, Z. Zheng, Basel, Birkhäuser, 2005, 255–290 | DOI | MR | Zbl

[15] V. V. Zharinov, TMF, 157:3 (2008), 391–405 | DOI | MR | Zbl

[16] V. V. Zharinov, TMF, 165:2 (2010), 195–216 | DOI | Zbl

[17] V. V. Zharinov, TMF, 144:3 (2005), 435–452 | DOI | MR | Zbl