Multiple sums and integrals as neutral BKP tau functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 112-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider multiple sums and multiple integrals as tau functions of the so-called neutral Kadomtsev–Petviashvili hierarchy on a root lattice of type B; neutral fermions, as the simplest tool, are used to derive them. The sums are taken over projective Schur functions $Q_\alpha$ for strict partitions $\alpha$. We consider two types of such sums: weighted sums of $Q_\alpha$ over strict partitions $\alpha$ and sums over products $Q_\alpha Q_\gamma$. We thus obtain discrete analogues of the beta ensembles $(\beta=1,2,4)$. Continuous versions are represented as multiple integrals, which are interesting in several problems in mathematics and physics.
Keywords: integrable system, symmetric function, projective Schur function
Mots-clés : random partition.
@article{TMF_2011_168_1_a8,
     author = {J. Harnad and J. W. van de Leur and A. Yu. Orlov},
     title = {Multiple sums and integrals as neutral {BKP} tau functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--124},
     year = {2011},
     volume = {168},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a8/}
}
TY  - JOUR
AU  - J. Harnad
AU  - J. W. van de Leur
AU  - A. Yu. Orlov
TI  - Multiple sums and integrals as neutral BKP tau functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 112
EP  - 124
VL  - 168
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a8/
LA  - ru
ID  - TMF_2011_168_1_a8
ER  - 
%0 Journal Article
%A J. Harnad
%A J. W. van de Leur
%A A. Yu. Orlov
%T Multiple sums and integrals as neutral BKP tau functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 112-124
%V 168
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a8/
%G ru
%F TMF_2011_168_1_a8
J. Harnad; J. W. van de Leur; A. Yu. Orlov. Multiple sums and integrals as neutral BKP tau functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a8/

[1] A. Okounkov, “The uses of random partitions”, XIVth International Congress on Mathematical Physics, eds. J.-C. Zambrini, World Sci., Hackensack, NJ, 2005, 379–403, arXiv: math-ph/0309015 | MR | Zbl

[2] M. E. Fisher, J. Stat. Phys., 34:5–6 (1984), 667–729 | DOI | MR | Zbl

[3] P. J. Forrester, Log-Gases and Random Matrices, London Math. Soc. Monogr. Ser., 34, Princeton Univ. Press, Princeton, NJ, 2010 | MR | Zbl

[4] M. L. Mehta, Random Matrices, Pure Appl. Math., 142, Elsevier, Amsterdam, 2004 | MR | Zbl

[5] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Physica D, 4:3 (1982), 343–365 | DOI | MR | Zbl

[6] M. Jimbo, T. Miwa, Publ. RIMS Kyoto Univ., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[7] V. G. Kac, J. van de Leur, “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, The Bispectral Problem, CRM Proc. Lect. Notes, 14, eds. J. Harnad, A. Kasman, AMS, Providence, RI, 1998, 159–202 | DOI | MR | Zbl

[8] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | MR | Zbl

[9] Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups”, Infinite-dimensional Lie Algebras and Groups, Adv. Ser. Math. Phys., 7, eds. V. G. Kac, World Sci., Teaneck, NJ, 1989, 449–464 | MR | Zbl

[10] J. J. C. Nimmo, J. Phys. A, 23:5 (1990), 751–760 | DOI | MR | Zbl

[11] A. Yu. Orlov, T. Shiota, Phys. Lett. A, 343:5 (2005), 384–396, arXiv: math-ph/0501017 | DOI | MR | Zbl

[12] C. A. Tracy, H. Widom, Duke Math. J., 123:1 (2004), 171–208, arXiv: math.PR/0210255 | DOI | MR | Zbl

[13] A. Yu. Orlov, TMF, 137:2 (2003), 253–270, arXiv: math-ph/0302011 | DOI | MR | Zbl

[14] J. W. van de Leur, A. Yu. Orlov, Phys. Lett. A, 373:31 (2009), 2675–2681, arXiv: 0801.0066 | DOI | MR | Zbl

[15] A. Okounkov, “$\mathrm{SL}(2)$ and $z$-measures”, Random Matrix Models and Their Applications, Math. Sci. Res. Inst. Publ., 40, eds. P. Bleher, A. Its, Cambridge Univ. Press, Cambridge, 2001, 407–420, arXiv: math.RT/0002135 | MR | Zbl

[16] O. Foda, M. Wheeler, M. Zuparic, J. Algebra, 321:11 (2009), 3249–3273, arXiv: 0808.2737 | DOI | MR | Zbl

[17] M. Vuletić, Int. Math. Res. Not., 2007:14 (2007), 043, 53 pp., arXiv: math-ph/0702068 | MR | Zbl

[18] Dzh. Kharnad, A. Yu. Orlov, TMF, 158:1 (2009), 23–48 | DOI | MR | Zbl

[19] T. Guhr, J. Math. Phys., 32:2 (1991), 336–347 | DOI | MR | Zbl

[20] I. K. Kostov, Nucl. Phys. B Proc. Suppl., 45:1 (1996), 13–28, arXiv: hep-th/9509124 | DOI | MR | Zbl

[21] I. Loutsenko, V. Spiridonov, J. Stat. Phys., 99:3–4 (2000), 751–767, arXiv: cond-mat/9909308 | DOI | MR | Zbl

[22] I. M. Loutsenko, V. P. Spiridonov, SIGMA, 3 (2007), 059, 11 pp., arXiv: 0704.3173 | DOI | MR | Zbl

[23] G. Braden, chastnoe soobschenie, 2006

[24] J. van de Leur, J. Nonlin. Math. Phys., 8:2 (2001), 288–311, arXiv: solv-int/9909028 | DOI | MR | Zbl

[25] J. Harnad, A. Yu. Orlov, J. Phys. A, 39:28 (2006), 8783–8809, arXiv: math-ph/0512056 | DOI | MR | Zbl

[26] Dzh. Kharnad, A. Yu. Orlov, TMF, 152:2 (2007), 265–277, arXiv: 0704.1145 | DOI | MR | Zbl