Mots-clés : random partition.
@article{TMF_2011_168_1_a8,
author = {J. Harnad and J. W. van de Leur and A. Yu. Orlov},
title = {Multiple sums and integrals as neutral {BKP} tau functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {112--124},
year = {2011},
volume = {168},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a8/}
}
TY - JOUR AU - J. Harnad AU - J. W. van de Leur AU - A. Yu. Orlov TI - Multiple sums and integrals as neutral BKP tau functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 112 EP - 124 VL - 168 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a8/ LA - ru ID - TMF_2011_168_1_a8 ER -
J. Harnad; J. W. van de Leur; A. Yu. Orlov. Multiple sums and integrals as neutral BKP tau functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a8/
[1] A. Okounkov, “The uses of random partitions”, XIVth International Congress on Mathematical Physics, eds. J.-C. Zambrini, World Sci., Hackensack, NJ, 2005, 379–403, arXiv: math-ph/0309015 | MR | Zbl
[2] M. E. Fisher, J. Stat. Phys., 34:5–6 (1984), 667–729 | DOI | MR | Zbl
[3] P. J. Forrester, Log-Gases and Random Matrices, London Math. Soc. Monogr. Ser., 34, Princeton Univ. Press, Princeton, NJ, 2010 | MR | Zbl
[4] M. L. Mehta, Random Matrices, Pure Appl. Math., 142, Elsevier, Amsterdam, 2004 | MR | Zbl
[5] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Physica D, 4:3 (1982), 343–365 | DOI | MR | Zbl
[6] M. Jimbo, T. Miwa, Publ. RIMS Kyoto Univ., 19:3 (1983), 943–1001 | DOI | MR | Zbl
[7] V. G. Kac, J. van de Leur, “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, The Bispectral Problem, CRM Proc. Lect. Notes, 14, eds. J. Harnad, A. Kasman, AMS, Providence, RI, 1998, 159–202 | DOI | MR | Zbl
[8] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | MR | Zbl
[9] Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups”, Infinite-dimensional Lie Algebras and Groups, Adv. Ser. Math. Phys., 7, eds. V. G. Kac, World Sci., Teaneck, NJ, 1989, 449–464 | MR | Zbl
[10] J. J. C. Nimmo, J. Phys. A, 23:5 (1990), 751–760 | DOI | MR | Zbl
[11] A. Yu. Orlov, T. Shiota, Phys. Lett. A, 343:5 (2005), 384–396, arXiv: math-ph/0501017 | DOI | MR | Zbl
[12] C. A. Tracy, H. Widom, Duke Math. J., 123:1 (2004), 171–208, arXiv: math.PR/0210255 | DOI | MR | Zbl
[13] A. Yu. Orlov, TMF, 137:2 (2003), 253–270, arXiv: math-ph/0302011 | DOI | MR | Zbl
[14] J. W. van de Leur, A. Yu. Orlov, Phys. Lett. A, 373:31 (2009), 2675–2681, arXiv: 0801.0066 | DOI | MR | Zbl
[15] A. Okounkov, “$\mathrm{SL}(2)$ and $z$-measures”, Random Matrix Models and Their Applications, Math. Sci. Res. Inst. Publ., 40, eds. P. Bleher, A. Its, Cambridge Univ. Press, Cambridge, 2001, 407–420, arXiv: math.RT/0002135 | MR | Zbl
[16] O. Foda, M. Wheeler, M. Zuparic, J. Algebra, 321:11 (2009), 3249–3273, arXiv: 0808.2737 | DOI | MR | Zbl
[17] M. Vuletić, Int. Math. Res. Not., 2007:14 (2007), 043, 53 pp., arXiv: math-ph/0702068 | MR | Zbl
[18] Dzh. Kharnad, A. Yu. Orlov, TMF, 158:1 (2009), 23–48 | DOI | MR | Zbl
[19] T. Guhr, J. Math. Phys., 32:2 (1991), 336–347 | DOI | MR | Zbl
[20] I. K. Kostov, Nucl. Phys. B Proc. Suppl., 45:1 (1996), 13–28, arXiv: hep-th/9509124 | DOI | MR | Zbl
[21] I. Loutsenko, V. Spiridonov, J. Stat. Phys., 99:3–4 (2000), 751–767, arXiv: cond-mat/9909308 | DOI | MR | Zbl
[22] I. M. Loutsenko, V. P. Spiridonov, SIGMA, 3 (2007), 059, 11 pp., arXiv: 0704.3173 | DOI | MR | Zbl
[23] G. Braden, chastnoe soobschenie, 2006
[24] J. van de Leur, J. Nonlin. Math. Phys., 8:2 (2001), 288–311, arXiv: solv-int/9909028 | DOI | MR | Zbl
[25] J. Harnad, A. Yu. Orlov, J. Phys. A, 39:28 (2006), 8783–8809, arXiv: math-ph/0512056 | DOI | MR | Zbl
[26] Dzh. Kharnad, A. Yu. Orlov, TMF, 152:2 (2007), 265–277, arXiv: 0704.1145 | DOI | MR | Zbl