Invariant description of $\mathbb{CP}^{N-1}$ sigma models
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 98-111

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an invariant formulation of completely integrable $\mathbb P^{N-1}$ Euclidean sigma models in two dimensions defined on the Riemann sphere $S^2$. We explicitly take the scaling invariance into account by expressing all the equations in terms of projection operators, discussing properties of the operators projecting onto one-dimensional subspaces in detail. We consider surfaces connected with the $\mathbb P^{N-1}$ models and determine invariant recurrence relations, linking the successive projection operators, and also immersion functions of the surfaces.
Keywords: sigma model, projector formalism, invariant recurrence relation.
Mots-clés : soliton surface in a Lie algebra
@article{TMF_2011_168_1_a7,
     author = {P. P. Goldstein and A. M. Grundland},
     title = {Invariant description of $\mathbb{CP}^{N-1}$ sigma models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {98--111},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/}
}
TY  - JOUR
AU  - P. P. Goldstein
AU  - A. M. Grundland
TI  - Invariant description of $\mathbb{CP}^{N-1}$ sigma models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 98
EP  - 111
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/
LA  - ru
ID  - TMF_2011_168_1_a7
ER  - 
%0 Journal Article
%A P. P. Goldstein
%A A. M. Grundland
%T Invariant description of $\mathbb{CP}^{N-1}$ sigma models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 98-111
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/
%G ru
%F TMF_2011_168_1_a7
P. P. Goldstein; A. M. Grundland. Invariant description of $\mathbb{CP}^{N-1}$ sigma models. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/