Invariant description of $\mathbb{CP}^{N-1}$ sigma models
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 98-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose an invariant formulation of completely integrable $\mathbb P^{N-1}$ Euclidean sigma models in two dimensions defined on the Riemann sphere $S^2$. We explicitly take the scaling invariance into account by expressing all the equations in terms of projection operators, discussing properties of the operators projecting onto one-dimensional subspaces in detail. We consider surfaces connected with the $\mathbb P^{N-1}$ models and determine invariant recurrence relations, linking the successive projection operators, and also immersion functions of the surfaces.
Keywords: sigma model, projector formalism, invariant recurrence relation.
Mots-clés : soliton surface in a Lie algebra
@article{TMF_2011_168_1_a7,
     author = {P. P. Goldstein and A. M. Grundland},
     title = {Invariant description of $\mathbb{CP}^{N-1}$ sigma models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {98--111},
     year = {2011},
     volume = {168},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/}
}
TY  - JOUR
AU  - P. P. Goldstein
AU  - A. M. Grundland
TI  - Invariant description of $\mathbb{CP}^{N-1}$ sigma models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 98
EP  - 111
VL  - 168
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/
LA  - ru
ID  - TMF_2011_168_1_a7
ER  - 
%0 Journal Article
%A P. P. Goldstein
%A A. M. Grundland
%T Invariant description of $\mathbb{CP}^{N-1}$ sigma models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 98-111
%V 168
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/
%G ru
%F TMF_2011_168_1_a7
P. P. Goldstein; A. M. Grundland. Invariant description of $\mathbb{CP}^{N-1}$ sigma models. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/

[1] J. Polchinski, A. Strominger, Phys. Rev. Lett., 67:13 (1991), 1681–1684 | DOI | MR | Zbl

[2] N. Manton, P. Sutcliffe, Topological Solitons, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[3] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1984 | MR | MR | Zbl

[4] Z. Ou-Yang, J. Lui, Y. Xie, Geometric Methods in Elastic Theory of Membranes in Liquid Crystal Phases, Adv. Ser. Theoret. Phys. Sci., 2, World Sci., Singapore, 1999 | DOI | Zbl

[5] A. V. Mikhailov, “Integrable magnetic models”, Solitons, Modern Problem in Condensed Matter Sci., 17, eds. S. E. Trullinger, V. E. Zakharov, V. L. Pokrovsky, North-Holland, Amsterdam, 1986, 623–690 | Zbl

[6] W. J. Zakrzewski, Low-Dimensional Sigma Models, Adam Hilger, Bristol, 1989 | MR | Zbl

[7] V. E. Zakharov, A. V. Mikhailov, ZhETF, 74:6 (1978), 1953–1973 | MR

[8] P. P. Goldstein, A. M. Grundland, J. Phys. A, 43:26 (2010), 265206, 18 pp., arXiv: 0910.0624 | DOI | MR | Zbl

[9] A. M. Din, W. J. Zakrzewski, Nucl. Phys. B, 174:2–3 (1980), 397–406 | DOI | MR

[10] A. M. Grundland, A. Strasburger, W. J. Zakrzewski, J. Phys. A, 39:29 (2006), 9187–9213, arXiv: math/0502482 | DOI | MR | Zbl

[11] B. G. Konopelchenko, Stud. Appl. Math., 96:1 (1996), 9–51 | DOI | MR | Zbl

[12] B. G. Konopelchenko, I. A. Taimanov, J. Phys. A, 29:6 (1996), 1261–1265, arXiv: dg-ga/9505006 | DOI | MR | Zbl

[13] K. Nomizu, T. Sasaki, Affine Differential Geometry, Cambridge Tracts Math., 111, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[14] A. M. Grundland, İ. Yurduşen, J. Phys. A, 42:17 (2009), 172001, 5 pp., arXiv: 0905.2556 | DOI | MR | Zbl