Invariant description of $\mathbb{CP}^{N-1}$ sigma models
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 98-111
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose an invariant formulation of completely integrable $\mathbb P^{N-1}$ Euclidean sigma models in two dimensions defined on the Riemann sphere $S^2$. We explicitly take the scaling invariance into account by expressing all the equations in terms of projection operators, discussing properties of the operators projecting onto one-dimensional subspaces in detail. We consider surfaces connected with the $\mathbb P^{N-1}$ models and determine invariant recurrence relations, linking the successive projection operators, and also immersion functions of the surfaces.
Keywords:
sigma model, projector formalism, invariant recurrence relation.
Mots-clés : soliton surface in a Lie algebra
Mots-clés : soliton surface in a Lie algebra
@article{TMF_2011_168_1_a7,
author = {P. P. Goldstein and A. M. Grundland},
title = {Invariant description of $\mathbb{CP}^{N-1}$ sigma models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {98--111},
publisher = {mathdoc},
volume = {168},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/}
}
TY - JOUR
AU - P. P. Goldstein
AU - A. M. Grundland
TI - Invariant description of $\mathbb{CP}^{N-1}$ sigma models
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2011
SP - 98
EP - 111
VL - 168
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/
LA - ru
ID - TMF_2011_168_1_a7
ER -
P. P. Goldstein; A. M. Grundland. Invariant description of $\mathbb{CP}^{N-1}$ sigma models. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a7/