Symmetry analysis and exact solutions of some Ostrovsky equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 49-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the classical Lie method and the nonclassical method to a generalized Ostrovsky equation (GOE) and to the integrable Vakhnenko equation (VE), which Vakhnenko and Parkes proved to be equivalent to the reduced Ostrovsky equation. Using a simple nonlinear ordinary differential equation, we find that for some polynomials of velocity, the GOE has abundant exact solutions expressible in terms of Jacobi elliptic functions and consequently has many solutions in the form of periodic waves, solitary waves, compactons, etc. The nonclassical method applied to the associated potential system for the VE yields solutions that arise from neither nonclassical symmetries of the VE nor potential symmetries. Some of these equations have interesting behavior such as “nonlinear superposition”.
Keywords: classical symmetry, partial differential equation.
Mots-clés : exact solution
@article{TMF_2011_168_1_a4,
     author = {M. L. Gandarias and M. S. Bruz\'on},
     title = {Symmetry analysis and exact solutions of some {Ostrovsky} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {49--64},
     year = {2011},
     volume = {168},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a4/}
}
TY  - JOUR
AU  - M. L. Gandarias
AU  - M. S. Bruzón
TI  - Symmetry analysis and exact solutions of some Ostrovsky equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 49
EP  - 64
VL  - 168
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a4/
LA  - ru
ID  - TMF_2011_168_1_a4
ER  - 
%0 Journal Article
%A M. L. Gandarias
%A M. S. Bruzón
%T Symmetry analysis and exact solutions of some Ostrovsky equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 49-64
%V 168
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a4/
%G ru
%F TMF_2011_168_1_a4
M. L. Gandarias; M. S. Bruzón. Symmetry analysis and exact solutions of some Ostrovsky equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a4/

[1] L. A. Ostrovskii, Okeanologiya, 18:2 (1978), 181–191

[2] L. A. Ostrovskii, Yu. A. Stepanyants, “Nelineinye volny vo vraschayuscheisya zhidkosti”, Nelineinye volny. Fizika i astrofizika, eds. A. V. Gaponov-Grekhov, M. I. Rabinovich, Nauka, M., 1993, 132–153 | MR | Zbl

[3] R. H. J. Grimshaw, L. A. Ostrovsky, V. I. Shrira, Yu. A. Stepanyants, Surv. Geophys., 19:4 (1998), 289–338 | DOI

[4] O. A. Gilman, R. Grimshaw, Yu. A. Stepanyants, Stud. Appl. Math., 95:1 (1995), 115–126 | DOI | MR | Zbl

[5] O. A. Gilman, R. Grimshaw, Yu. A. Stepanyants, Dynam. Atmos. Oceans, 23:1–4 (1996), 403–411 | DOI

[6] A. I. Leonov, “The effect of the earth's rotation on the propagation of weak nonlinear surface and internal long oceanic waves”, Fourth International Conference on Collective Phenomena, Ann. New York Acad. Sci., 373, eds. J. L. Lebowitz, Acad. Sci., New York, 1981, 150–159 | DOI | MR | Zbl

[7] V. M. Galkin, Yu. A. Stepanyants, PMM, 55:6 (1991), 1051–1055 | DOI | MR | Zbl

[8] Yu. A. Stepanyants, Chaos, Solitons and Fractals, 28:1 (2006), 193–204 | DOI | MR | Zbl

[9] V. O. Vakhnenko, E. J. Parkes, Nonlinearity, 11:6 (1998), 1457–1464 | DOI | MR | Zbl

[10] E. Yusufoğlu, A. Bekir, Chaos, Solitons and Fractals, 38:4 (2008), 1126–1133 | DOI | MR | Zbl

[11] L. Tian, J. Yin, Chaos, Solitons and Fractals, 35:5 (2008), 991–995 | DOI | MR | Zbl

[12] G. W. Bluman, J. D. Cole, J. Math. Mech., 18 (1968/69), 1025–1042 | MR

[13] P. A. Clarkson, E. L. Mansfield, SIAM J. Appl. Math., 54:6 (1994), 1693–1719, arXiv: solv-int/9401002 | DOI | MR | Zbl

[14] N. A. Kudryashov, Chaos, Solitons and Fractals, 24:5 (2005), 1217–1231, arXiv: nlin/0406007 | DOI | MR | Zbl

[15] N. A. Kudryashov, N. B. Loguinova, Appl. Math. Comput., 205:1 (2008), 396–402 | DOI | MR | Zbl

[16] I. S. Krasil'shchik, A. M. Vinogradov, Acta Appl. Math., 2:1 (1984), 79–96 | DOI | MR | Zbl

[17] I. S. Krasil'shchik, A. M. Vinogradov, Acta Appl. Math., 15:1–2 (1989), 161–209 | DOI | MR | Zbl

[18] A. M. Vinogradov (ed.), Symmetries of Partial Differential Equations. Conservation Laws – Applications – Algorithms, Kluwer, Dordrecht, 1989 | MR | Zbl

[19] I. Sh. Akhatov, R. K. Gazizov, N. Kh. Ibragimov, “Nelokalnye simmetrii. Evristicheskii podkhod”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 34, eds. R. V. Gamkrelidze, VINITI, M., 1989, 3–83 | DOI | MR | Zbl

[20] G. W. Bluman, G. J. Reid, S. Kumei, J. Math. Phys., 29:4 (1988), 806–811 | DOI | MR | Zbl

[21] G. W. Bluman, Z. Yan, European J. Appl. Math., 16:2 (2005), 239–261 | DOI | MR | Zbl

[22] M. L. Gandarias, M. S. Bruzon, Nonlinear Anal., 71:12 (2009), e1826–e1834 | DOI | MR | Zbl

[23] M. L. Gandarias, “New Potential symmetries”, SIDE III – Symmetries and Integrability of Difference Equations, CRM Proc. Lecture Notes, 25, eds. D. Levi, O. Ragnisco, AMS, Providence, RI, 2000, 161–165 | DOI | MR | Zbl

[24] M. L. Gandarias, J. Phys. A, 29:3 (1996), 607–633 | DOI | MR | Zbl