Exact solutions of the~modified Korteweg--de Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 35-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the inverse scattering method to obtain a formula for certain exact solutions of the modified Korteweg–de Vries (mKdV) equation. Using matrix exponentials, we write the kernel of the relevant Marchenko integral equation as $\Omega(x+y;t)=Ce^{-(x+y)A}e^{8A^3 t}B$, where the real matrix triplet $(A,B,C)$ consists of a constant $p{\times}p$ matrix $A$ with eigenvalues having positive real parts, a constant $p\times1$ matrix $B$, and a constant $1\times p$ matrix $C$ for a positive integer $p$. Using separation of variables, we explicitly solve the Marchenko integral equation, yielding exact solutions of the mKdV equation. These solutions are constructed in terms of the unique solution $P$ of the Sylvester equation $AP+PA=BC$ or in terms of the unique solutions $Q$ and $N$ of the Lyapunov equations $A^\dag Q+QA=C^\dag C$ and $AN+NA^\dag=BB^\dag$, where $B^\dag$ denotes the conjugate transposed matrix. We consider two interesting examples.
Keywords: inverse scattering method, Lyapunov equation, explicit solution of the modified Korteweg–de Vries equation.
@article{TMF_2011_168_1_a3,
     author = {F. Demontis},
     title = {Exact solutions of the~modified {Korteweg--de} {Vries} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {35--48},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a3/}
}
TY  - JOUR
AU  - F. Demontis
TI  - Exact solutions of the~modified Korteweg--de Vries equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 35
EP  - 48
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a3/
LA  - ru
ID  - TMF_2011_168_1_a3
ER  - 
%0 Journal Article
%A F. Demontis
%T Exact solutions of the~modified Korteweg--de Vries equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 35-48
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a3/
%G ru
%F TMF_2011_168_1_a3
F. Demontis. Exact solutions of the~modified Korteweg--de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a3/