Classical and nonclassical symmetries for the~Krichever--Novikov equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 24-34
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Krichever–Novikov equation from the standpoint of the theory of symmetry reductions in partial differential equations. We obtain a Lie group classification. Moreover, we obtain some exact solutions, and we apply the nonclassical method.
Keywords:
partial differential equation, symmetry
Mots-clés : exact solution.
Mots-clés : exact solution.
@article{TMF_2011_168_1_a2,
author = {M. S. Bruz\'on and M. L. Gandarias},
title = {Classical and nonclassical symmetries for {the~Krichever--Novikov} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {24--34},
publisher = {mathdoc},
volume = {168},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a2/}
}
TY - JOUR AU - M. S. Bruzón AU - M. L. Gandarias TI - Classical and nonclassical symmetries for the~Krichever--Novikov equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 24 EP - 34 VL - 168 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a2/ LA - ru ID - TMF_2011_168_1_a2 ER -
M. S. Bruzón; M. L. Gandarias. Classical and nonclassical symmetries for the~Krichever--Novikov equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 24-34. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a2/