A variational perspective on classical Higgs fields in gauge-natural theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 171-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Higgs fields on gauge-natural prolongations of principal bundles are defined by invariant variational problems and related canonical conservation laws along the kernel of a gauge-natural Jacobi morphism.
Mots-clés : jet, Cartan connection
Keywords: gauge-natural bundle, conserved quantity, Higgs field.
@article{TMF_2011_168_1_a13,
     author = {M. Palese and E. Winterroth},
     title = {A~variational perspective on classical {Higgs} fields in gauge-natural theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--179},
     year = {2011},
     volume = {168},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a13/}
}
TY  - JOUR
AU  - M. Palese
AU  - E. Winterroth
TI  - A variational perspective on classical Higgs fields in gauge-natural theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 171
EP  - 179
VL  - 168
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a13/
LA  - ru
ID  - TMF_2011_168_1_a13
ER  - 
%0 Journal Article
%A M. Palese
%A E. Winterroth
%T A variational perspective on classical Higgs fields in gauge-natural theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 171-179
%V 168
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a13/
%G ru
%F TMF_2011_168_1_a13
M. Palese; E. Winterroth. A variational perspective on classical Higgs fields in gauge-natural theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 171-179. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a13/

[1] D. J. Eck, Mem. Amer. Math. Soc., 33:247 (1981), 1–48 | MR

[2] C. Ehresmann, C. R. Acad. Sci. Paris, 240 (1955), 1755–1757 | MR | Zbl

[3] I. Kolář, P. W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer, New York, 1993 | MR | Zbl

[4] M. Palese, E. Winterroth, Rep. Math. Phys., 54:3 (2004), 349–364, arXiv: math-ph/0406009 | DOI | MR | Zbl

[5] L. Fatibene, M. Francaviglia, Natural and Gauge Natural Formalism for Classical Field Theories. A Geometric Perspective Including Spinors and Gauge Theories, Kluwer, Dordrecht, 2003 | MR | Zbl

[6] M. Ferraris, M. Francaviglia, M. Palese, E. Winterroth, Int. J. Geom. Methods Mod. Phys., 5:6 (2008), 973–988 | DOI | MR | Zbl

[7] M. Ferraris, M. Francaviglia, M. Palese, E. Winterroth, Int. J. Geom. Methods Mod. Phys., 8:1 (2011), 177–185 | DOI | MR | Zbl

[8] E. H. K. Winterroth, Variational derivatives of gauge-natural invariant Lagrangians and conservation laws, PhD thesis, University of Torino, 2007

[9] D. Krupka, “Variational sequences on finite order jet spaces”, Differential Geometry and Its Applications (Brno, Czechoslovakia, 27 Aug. – 2 Sept. 1989), eds. J. Janyška et al., World Sci., Singapore, 1990, 236–254 | MR | Zbl

[10] M. Palese, E. Winterroth, Arch. Math., 41:3 (2005), 289–310 | MR | Zbl

[11] M. Paleze, E. Uinterrot, TMF, 152:2 (2007), 377–389 | DOI | MR | Zbl

[12] P. G. Bergmann, Phys. Rev., 75:4 (1949), 680–685 | DOI | MR | Zbl

[13] E. Noether, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 2 (1918), 235–257 | MR

[14] R. Utiyama, Phys. Rev., 101:5 (1956), 1597–1607 | DOI | MR | Zbl

[15] D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[16] R. Vitolo, Math. Proc. Cambridge Philos. Soc., 125:2 (1999), 321–333 | DOI | MR | Zbl

[17] M. Palese, E. Winterroth, “Noether identities in Einstein–Dirac theory and the Lie derivative of spinor fields”, Proc. of the 10th International Conference on Differential Geometry and its Applications, DGA 2007 (Olomouc, Czech Republic, August 27–31, 2007), World Sci. Publ., Hackensack, NJ, 2008, 643–653 | DOI | MR | Zbl

[18] M. Palese, E. Winterroth, Rep. Math. Phys., 62:2 (2008), 229–239, arXiv: 0712.0925 | DOI | MR | Zbl

[19] G. Sardanashvily, Int. J. Geom. Methods Mod. Phys., 3:1 (2006), 139–148 | DOI | MR

[20] L. Mangiarotti, G. Sardanashvily, Connections in Classical and Quantum Field Theory, World Sci. Publ., Singapore, 2000 | MR | Zbl

[21] M. Palese, E. Winterroth, “Invariant variational problems and Cartan connections on gauge-natural bundles”, AIP Conf. Proc., 1191, eds. P. Kielanowski, Springer, Berlin, 2009, 160–165 | DOI

[22] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972

[23] Y. Kosmann, C. R. Acad. Sci. Paris Sér. A-B, 262 (1966), A289–A292 ; A394–A397 | MR | MR