Quantization of classical mechanics: Shall we Lie?
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 162-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a Lie–Noether-symmetry solution of two problems that arise with classical quantization: the quantization of higher-order (more than second) Euler–Lagrange ordinary differential equations of classical mechanics and the quantization of any second-order Euler–Lagrange ordinary differential equation that classically comes from a simple linear equation via nonlinear canonical transformations.
Mots-clés : quantization
Keywords: Ostrogradsky method, Schrödinger equation, Lie symmetry, Noether symmetry.
@article{TMF_2011_168_1_a12,
     author = {M. C. Nucci},
     title = {Quantization of classical mechanics: {Shall} we {Lie?}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {162--170},
     year = {2011},
     volume = {168},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a12/}
}
TY  - JOUR
AU  - M. C. Nucci
TI  - Quantization of classical mechanics: Shall we Lie?
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 162
EP  - 170
VL  - 168
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a12/
LA  - ru
ID  - TMF_2011_168_1_a12
ER  - 
%0 Journal Article
%A M. C. Nucci
%T Quantization of classical mechanics: Shall we Lie?
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 162-170
%V 168
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a12/
%G ru
%F TMF_2011_168_1_a12
M. C. Nucci. Quantization of classical mechanics: Shall we Lie?. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 162-170. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a12/

[1] L. D. Faddeev, Internat. J. Modern Phys. A, 25:6 (2010), 1079–1089 | DOI | MR | Zbl

[2] M. C. Nucci, P. G. L. Leach, Phys. Scr., 81:5 (2010), 055003, 4 pp., arXiv: 0810.5772 | DOI | Zbl

[3] M. C. Nucci, P. G. L. Leach, J. Math. Phys., 50:11 (2009), 113508, 6 pp. | DOI | MR | Zbl

[4] A. Pais, G. E. Uhlenbeck, Phys. Rev., 79:1 (1950), 145–165 | DOI | MR | Zbl

[5] K. Jansenn, J. Kuti, Chuan Liu, Phys. Lett. B, 309:1–2 (1993), 119–126, arXiv: hep-lat/9305003 | DOI

[6] C. M. Bender, P. D. Mannheim, J. Phys. A, 41:30 (2008), 304018, 7 pp. | DOI | MR | Zbl

[7] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960 | MR | MR | Zbl

[8] S. W. Hawking, T. Hertog, Phys. Rev. D, 65:10 (2002), 103515, 8 pages, arXiv: hep-th/0107088 | DOI | MR

[9] L. Van Hove, Acad. Roy. Belgique, Cl. Sci., Mém., Coll. in 8$^\circ$, 26:6 (1951), 61–102 | MR | Zbl

[10] A. Brodlie, J. Math. Phys., 45:8 (2004), 3413–3431, arXiv: quant-ph/0401160 | DOI | MR | Zbl

[11] H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1980 | MR | Zbl

[12] M. C. Nucci, P. G. L. Leach, Lie groups and quantum mechanics, arXiv: 0812.1362 | MR

[13] M. V. Ostrogradsky, J. Reine Angew. Math., 15 (1836), 332–354 | DOI | MR | Zbl

[14] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Math. Lib., XVII, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[15] P. G. L. Leach, M. C. Nucci, J. Math. Phys., 48:12 (2007), 123510, 16 pp. | DOI | MR | Zbl

[16] M. C. Nucci, “Interactive REDUCE programs for calculating Lie point, non-classical, Lie–Backlund, and approximate symmetries of differential equations: manual and floppy disk”, CRC Handbook of Lie Group Analysis of Differential Equations, v. 3, New Trends in Theoretical Developments and Computational Methods, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1996, 415–481 | MR | Zbl

[17] M. C. Nucci, P. G. L. Leach, K. Andriopoulos, J. Math. Anal. Appl., 319:1 (2006), 357–368 | DOI | MR | Zbl