Properties of the~solitonic potentials of the~heat operator
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 13-23
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study properties of the purely solitonic $\tau$-function and potential of the heat equation in detail. We describe the asymptotic behavior of the potential and establish the ray structure of this asymptotic behavior on the plane $(x_1,x_2)$ in dependence on the parameters of the potential.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Kadomtsev–Petviashvili equation, asymptotic potential.
Mots-clés : soliton
                    
                  
                
                
                Mots-clés : soliton
@article{TMF_2011_168_1_a1,
     author = {M. Boiti and F. Pempinelli and A. K. Pogrebkov},
     title = {Properties of the~solitonic potentials of the~heat operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {13--23},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a1/}
}
                      
                      
                    TY - JOUR AU - M. Boiti AU - F. Pempinelli AU - A. K. Pogrebkov TI - Properties of the~solitonic potentials of the~heat operator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 13 EP - 23 VL - 168 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a1/ LA - ru ID - TMF_2011_168_1_a1 ER -
M. Boiti; F. Pempinelli; A. K. Pogrebkov. Properties of the~solitonic potentials of the~heat operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a1/
