Breathers in a damped–driven nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 4-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct time-periodic solitons of the parametrically driven damped nonlinear Schrödinger equation as solutions of a boundary value problem for the space-dependent Fourier coefficients.
Keywords: nonlinear Schrödinger equation, stability, damping, parametric driving
Mots-clés : soliton, bifurcation.
@article{TMF_2011_168_1_a0,
     author = {N. V. Alekseeva and E. V. Zemlyanaya},
     title = {Breathers in a~damped{\textendash}driven nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {4--12},
     year = {2011},
     volume = {168},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a0/}
}
TY  - JOUR
AU  - N. V. Alekseeva
AU  - E. V. Zemlyanaya
TI  - Breathers in a damped–driven nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 4
EP  - 12
VL  - 168
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a0/
LA  - ru
ID  - TMF_2011_168_1_a0
ER  - 
%0 Journal Article
%A N. V. Alekseeva
%A E. V. Zemlyanaya
%T Breathers in a damped–driven nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 4-12
%V 168
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a0/
%G ru
%F TMF_2011_168_1_a0
N. V. Alekseeva; E. V. Zemlyanaya. Breathers in a damped–driven nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 168 (2011) no. 1, pp. 4-12. http://geodesic.mathdoc.fr/item/TMF_2011_168_1_a0/

[1] J. W. Miles, J. Fluid Mech., 148 (1984), 451–460 ; C. Elphick, E. Meron, Phys. Rev. A, 40:6 (1989), 3226–3229 ; W. Zhang, J. Viñals, Phys. Rev. Lett., 74:5 (1995), 690–693, arXiv: ; S. P. Decent, A. D. D. Craik, J. Fluid Mech., 293 (1995), 237–268 ; S. P. Decent, Fluid Dynam. Res., 21:2 (1997), 115–137 ; L. Zhang, X. Wang, Z. Tao, Phys. Rev. E, 75:3 (2007), 036602, 6 pp. patt-sol/9311005 | DOI | MR | Zbl | DOI | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI

[2] I. H. Deutsch, I. Abram, J. Opt. Soc. Amer. B, 11:11 (1994), 2303–2313 ; A. Mecozzi, W. L. Kath, P. Kumar, C. G. Goedde, Opt. Lett., 19:24 (1994), 2050–2052 ; S. Longhi, Opt. Lett., 20:7 (1995), 695–697 ; V. J. Sánchez-Morcillo, I. Pérez-Arjona, F. Silva, G. J. de Valcárcel, E. Roldán, Opt. Lett., 25:13 (2000), 957–959 | DOI | DOI | DOI | DOI

[3] I. V. Barashenkov, M. M. Bogdan, V. I. Korobov, Europhys. Lett., 15:2 (1991), 113 | DOI

[4] B. Denardo, B. Galvin, A. Greenfield, A. Larraza, S. Putterman, W. Wright, Phys. Rev. Lett., 68:11 (1992), 1730–1733 ; W.-Z. Chen, Phys. Rev. B, 49:21 (1994), 15063–15066 ; G. Huang, S.-Y. Lou, M. G. Velarde, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:10 (1996), 1775–1787 ; I. V. Barashenkov, N. V. Alexeeva, E. V. Zemlyanaya, Phys. Rev. Lett., 89:10 (2002), 104101, 4 pp., arXiv: nlin/0112047 | DOI | DOI | DOI | Zbl | DOI

[5] M. Bondila, I. V. Barashenkov, M. M. Bogdan, Physica D, 87:1–4 (1995), 314–320 | DOI | Zbl

[6] N. V. Alexeeva, I. V. Barashenkov, D. E. Pelinovsky, Nonlinearity, 12:1 (1999), 103–140 | DOI | MR | Zbl

[7] E. V. Zemlyanaya, N. V. Alekseeva, TMF, 159:3 (2009), 536–544 | DOI | MR | Zbl

[8] D. M. Ambrose, J. Wilkening, Comm. Appl. Math. Comput. Sci., 4:1 (2009), 177–215, arXiv: ; J. Nonlinear Sci., 20:3 (2010), 277–308, arXiv: 0811.42050804.3623 | DOI | MR | Zbl | DOI | MR | Zbl

[9] I. V. Barashenkov, E. V. Zemlyanaya, T. C. van Heerden, Time-periodic solitons in a damped-driven nonlinear Schrödinger equation, Phys. Rev. E (to appear), Phys. Rev. E., arXiv: 1103.3604 | MR