Birkhoff strata of the Grassmannian $\mathrm{Gr}^{(2)}$: Algebraic curves
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 448-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study algebraic varieties and curves arising in the Birkhoff strata of the Sato Grassmannian Gr$^{(2)}$. We show that the big cell $\Sigma_0$ contains the tower of families of the normal rational curves of all odd orders. The strata $\Sigma_{2n}$, $n=1,2,3,\dots$, contain hyperelliptic curves of genus $n$ and their coordinate rings. The strata $\Sigma_{2n+1}$, $n=0,1,2,3,\dots$, contain $(2m+1,2m+3)$ plane curves for $n=2m,2m-1$ $(m\geq2)$ and also $(3,4)$ and $(3,5)$ curves in $\Sigma_3$ and $\Sigma_5$. Curves in the strata $\Sigma_{2n+1}$ have zero genus.
Keywords: Sato Grassmannian, Birkhoff stratum, algebraic manifold, hyperelliptic curve.
@article{TMF_2011_167_3_a9,
     author = {B. G. Konopelchenko and G. Ortenzi},
     title = {Birkhoff strata of {the~Grassmannian} $\mathrm{Gr}^{(2)}$: {Algebraic} curves},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {448--464},
     year = {2011},
     volume = {167},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a9/}
}
TY  - JOUR
AU  - B. G. Konopelchenko
AU  - G. Ortenzi
TI  - Birkhoff strata of the Grassmannian $\mathrm{Gr}^{(2)}$: Algebraic curves
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 448
EP  - 464
VL  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a9/
LA  - ru
ID  - TMF_2011_167_3_a9
ER  - 
%0 Journal Article
%A B. G. Konopelchenko
%A G. Ortenzi
%T Birkhoff strata of the Grassmannian $\mathrm{Gr}^{(2)}$: Algebraic curves
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 448-464
%V 167
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a9/
%G ru
%F TMF_2011_167_3_a9
B. G. Konopelchenko; G. Ortenzi. Birkhoff strata of the Grassmannian $\mathrm{Gr}^{(2)}$: Algebraic curves. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 448-464. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a9/

[1] M. Sato, Y. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold”, Nonlinear Partial Differential Equations in Applied Science, North-Holland Math. Stud., 81, eds. H. Fujita, Peter D. Lax, G. Strang, North-Holland, Amsterdam, 1983, 259–271 | DOI | MR | Zbl

[2] G. Segal, G. Wilson, Inst. Hautes Études Sci. Publ. Math., 61:1 (1985), 5–65 | DOI | MR | Zbl

[3] A. Pressley, G. Segal, Loop Groups, Oxford Math. Monogr., Clarendon Press, Oxford, 1988 | MR | Zbl

[4] B. G. Konopelchenko, G. Ortenzi, Algebraic curves in Birkhoff strata of Sato Grassmannian, arXiv: 1005.2053 | MR

[5] B. G. Konopelchenko, G. Ortenzi, Algebraic varieties in Birkhoff strata of the Grassmannian $\mathrm{Gr}{^{(2)}}$: Harrison cohomology and integrable systems, arXiv: 1102.0700 | MR

[6] J. Harris, Algebraic Geometry: A First Course, Graduate Texts Math., 133, Springer, Berlin, 1992 | DOI | MR | Zbl

[7] V. M. Bukhshtaber, D. V. Leikin, V. Z. Enolskii, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR | Zbl

[8] H. F. Baker, Abelian Functions, Cambridge Math. Library, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[9] Y. Kodama, B. G. Konopelchenko, J. Phys. A, 35:31 (2002), L489–L500, arXiv: nlin/0205012 | DOI | MR | Zbl