Mots-clés : classification
@article{TMF_2011_167_3_a6,
author = {I. T. Habibullin and E. V. Gudkova},
title = {An~algebraic method for classifying {S-integrable} discrete models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {407--419},
year = {2011},
volume = {167},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a6/}
}
I. T. Habibullin; E. V. Gudkova. An algebraic method for classifying S-integrable discrete models. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 407-419. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a6/
[1] A. I. Bobenko, Yu. B. Suris, Int. Math. Res. Not., 2002:11 (2002), 573–611, arXiv: nlin/0110004 | DOI | MR | Zbl
[2] F. W. Nijhoff, Phys. Lett. A, 297:1–2 (2002), 49–58, arXiv: nlin/0110027 | DOI | MR | Zbl
[3] V. E. Adler, A. I. Bobenko, Yu. B. Suris, Comm. Math. Phys., 233:3 (2003), 513–543, arXiv: nlin/0202024 | DOI | MR | Zbl
[4] F. W. Nijhoff, A. J. Walker, Glasgow Math. J., 43:A (2001), 109–123 | DOI | MR | Zbl
[5] D. Levi, R. I. Yamilov, On a nonlinear integrable difference equation on the square 3D-inconsistent, arXiv: ; J. Nonlinear Math. Phys., 11:1 (2004), 75–101 0902.2126 | DOI | MR | Zbl
[6] P. Xenitidis, Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case, arXiv: 0902.3954 | MR
[7] O. G. Rasin, P. E. Hydon, J. Phys. A, 40:42 (2007), 12763–12773 | DOI | MR | Zbl
[8] A. V. Mikhailov, J. P. Wang, P. Xenitidis, Recursion operators, conservation laws and integrability conditions for difference equations, arXiv: 1004.5346 | MR
[9] A. Tongas, D. Tsoubelis, P. Xenitidis, J. Math. Phys., 42:12 (2001), 5762–5784 | DOI | MR | Zbl
[10] M. P. Bellon, C.-M. Viallet, Comm. Math. Phys., 204:2 (1999), 425–437, arXiv: chao-dyn/9805006 | DOI | MR | Zbl
[11] F. W. Nijhoff, A. Ramani, B. Grammaticos, Y. Ohta, Stud. Appl. Math., 106:3 (2001), 261–314, arXiv: solv-int/9812011 | DOI | MR | Zbl
[12] B. Grammaticos, G. Karra, V. Papageorgiou, A. Ramani, “Integrability of discrete-time systems”, Chaotic Dynamics, NATO Adv. Sci. Inst. Ser. B. Phys., 298, ed. T. Bountis, Plenum, New York, 1992, 75–90 | MR
[13] J. Hietarinta, J. Nonlinear Math. Phys., 12, Suppl. 2 (2005), 223–230 | DOI | MR | Zbl
[14] A. N. Leznov, V. G. Smirnov, A. B. Shabat, TMF, 51:1 (1982), 10–21 | DOI | MR | Zbl
[15] A. V. Zhiber, F. Kh. Mukminov, “Kvadratichnye sistemy, simmetrii, kharakteristicheskie i polnye algebry”, Zadachi matematicheskoi fiziki i asimptotika ikh reshenii, ed. L. A. Kalyakin, BNTs URO AN SSSR, Ufa, 1991, 14–33
[16] A. V. Zhiber, R. D. Murtazina, Fundament. i prikl. matem., 12:7 (2006), 65–78 | DOI | MR | Zbl
[17] I. T. Habibullin, SIGMA, 1 (2005), 023, 9 pp., arXiv: nlin.SI/0506027 | DOI | MR | Zbl
[18] F. W. Nijhoff, H. W. Capel, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR | Zbl
[19] A. G. Rasin, J. Phys. A, 43:23 (2010), 235201, 11 pp., arXiv: 1001.0724 | DOI | MR | Zbl
[20] J. Hietarinta, C. Viallet, J. Phys. A, 40:42 (2007), 12629–12643, arXiv: 0705.1903 | DOI | MR | Zbl
[21] D. Levi, R. I. Yamilov, Generalized symmetry integrability test for discrete equations on the square lattice, accepted by J. Phys. A, arXiv: 1011.0070 | MR
[22] B. Doubrov, I. Zelenko, J. London Math. Soc., 80:3 (2009), 545–566, arXiv: math.DG/0703662 | DOI | MR | Zbl