An algebraic method for classifying S-integrable discrete models
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 407-419 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a method for classifying integrable equations on quad-graphs based on algebraic ideas. We assign a Lie ring to the equation and study the function describing the dimensions of linear spaces spanned by multiple commutators of the ring generators. This function grows exponentially in the general case. Examples show that it grows more slowly for integrable equations. We propose a classification scheme based on this observation.
Keywords: quad-graph equation, characteristic vector field, Lie ring, integrability condition, discrete KdV equation.
Mots-clés : classification
@article{TMF_2011_167_3_a6,
     author = {I. T. Habibullin and E. V. Gudkova},
     title = {An~algebraic method for classifying {S-integrable} discrete models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {407--419},
     year = {2011},
     volume = {167},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a6/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - E. V. Gudkova
TI  - An algebraic method for classifying S-integrable discrete models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 407
EP  - 419
VL  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a6/
LA  - ru
ID  - TMF_2011_167_3_a6
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A E. V. Gudkova
%T An algebraic method for classifying S-integrable discrete models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 407-419
%V 167
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a6/
%G ru
%F TMF_2011_167_3_a6
I. T. Habibullin; E. V. Gudkova. An algebraic method for classifying S-integrable discrete models. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 407-419. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a6/

[1] A. I. Bobenko, Yu. B. Suris, Int. Math. Res. Not., 2002:11 (2002), 573–611, arXiv: nlin/0110004 | DOI | MR | Zbl

[2] F. W. Nijhoff, Phys. Lett. A, 297:1–2 (2002), 49–58, arXiv: nlin/0110027 | DOI | MR | Zbl

[3] V. E. Adler, A. I. Bobenko, Yu. B. Suris, Comm. Math. Phys., 233:3 (2003), 513–543, arXiv: nlin/0202024 | DOI | MR | Zbl

[4] F. W. Nijhoff, A. J. Walker, Glasgow Math. J., 43:A (2001), 109–123 | DOI | MR | Zbl

[5] D. Levi, R. I. Yamilov, On a nonlinear integrable difference equation on the square 3D-inconsistent, arXiv: ; J. Nonlinear Math. Phys., 11:1 (2004), 75–101 0902.2126 | DOI | MR | Zbl

[6] P. Xenitidis, Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case, arXiv: 0902.3954 | MR

[7] O. G. Rasin, P. E. Hydon, J. Phys. A, 40:42 (2007), 12763–12773 | DOI | MR | Zbl

[8] A. V. Mikhailov, J. P. Wang, P. Xenitidis, Recursion operators, conservation laws and integrability conditions for difference equations, arXiv: 1004.5346 | MR

[9] A. Tongas, D. Tsoubelis, P. Xenitidis, J. Math. Phys., 42:12 (2001), 5762–5784 | DOI | MR | Zbl

[10] M. P. Bellon, C.-M. Viallet, Comm. Math. Phys., 204:2 (1999), 425–437, arXiv: chao-dyn/9805006 | DOI | MR | Zbl

[11] F. W. Nijhoff, A. Ramani, B. Grammaticos, Y. Ohta, Stud. Appl. Math., 106:3 (2001), 261–314, arXiv: solv-int/9812011 | DOI | MR | Zbl

[12] B. Grammaticos, G. Karra, V. Papageorgiou, A. Ramani, “Integrability of discrete-time systems”, Chaotic Dynamics, NATO Adv. Sci. Inst. Ser. B. Phys., 298, ed. T. Bountis, Plenum, New York, 1992, 75–90 | MR

[13] J. Hietarinta, J. Nonlinear Math. Phys., 12, Suppl. 2 (2005), 223–230 | DOI | MR | Zbl

[14] A. N. Leznov, V. G. Smirnov, A. B. Shabat, TMF, 51:1 (1982), 10–21 | DOI | MR | Zbl

[15] A. V. Zhiber, F. Kh. Mukminov, “Kvadratichnye sistemy, simmetrii, kharakteristicheskie i polnye algebry”, Zadachi matematicheskoi fiziki i asimptotika ikh reshenii, ed. L. A. Kalyakin, BNTs URO AN SSSR, Ufa, 1991, 14–33

[16] A. V. Zhiber, R. D. Murtazina, Fundament. i prikl. matem., 12:7 (2006), 65–78 | DOI | MR | Zbl

[17] I. T. Habibullin, SIGMA, 1 (2005), 023, 9 pp., arXiv: nlin.SI/0506027 | DOI | MR | Zbl

[18] F. W. Nijhoff, H. W. Capel, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR | Zbl

[19] A. G. Rasin, J. Phys. A, 43:23 (2010), 235201, 11 pp., arXiv: 1001.0724 | DOI | MR | Zbl

[20] J. Hietarinta, C. Viallet, J. Phys. A, 40:42 (2007), 12629–12643, arXiv: 0705.1903 | DOI | MR | Zbl

[21] D. Levi, R. I. Yamilov, Generalized symmetry integrability test for discrete equations on the square lattice, accepted by J. Phys. A, arXiv: 1011.0070 | MR

[22] B. Doubrov, I. Zelenko, J. London Math. Soc., 80:3 (2009), 545–566, arXiv: math.DG/0703662 | DOI | MR | Zbl