Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 394-406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze and compare methods for constructing the recursion operators for a special class of integrable nonlinear differential equations related to symmetric spaces of the type A.III in Cartan's classification and having additional reductions.
Keywords: rational bundle, integrable equation, recursion operator.
@article{TMF_2011_167_3_a5,
     author = {V. S. Gerdjikov and G. G. Grahovski and A. V. Mikhailov and T. I. Valchev},
     title = {Rational bundles and recursion operators for integrable equations on {A.III-type} symmetric spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {394--406},
     year = {2011},
     volume = {167},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a5/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - G. G. Grahovski
AU  - A. V. Mikhailov
AU  - T. I. Valchev
TI  - Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 394
EP  - 406
VL  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a5/
LA  - ru
ID  - TMF_2011_167_3_a5
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A G. G. Grahovski
%A A. V. Mikhailov
%A T. I. Valchev
%T Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 394-406
%V 167
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a5/
%G ru
%F TMF_2011_167_3_a5
V. S. Gerdjikov; G. G. Grahovski; A. V. Mikhailov; T. I. Valchev. Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 394-406. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a5/

[1] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, ed. R. V. Gamkrelidze, VINITI, M., 1984, 81–180 | DOI | MR | Zbl

[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[3] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[4] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Phys., 748, Springer, Berlin, 2008 | DOI | MR | Zbl

[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl

[6] D. J. Kaup, A. C. Newell, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR | Zbl

[7] V. S. Gerdžikov, E. H. Hristov, Bulgar. J. Phys., 7:2 (1980), 119–133 | MR

[8] V. S. Gerdjikov, M. I. Ivanov, Bulgar. J. Phys., 10:2 (1983), 130–143 | MR

[9] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443–448

[10] A. V. Mikhailov, Pisma v ZhETF, 32:2 (1980), 187–192

[11] A. V. Mikhailov, Physica D, 3:1–2 (1981), 73–117 | DOI | Zbl

[12] A. V. Mikhailov, Phys. Lett. A, 92:2 (1982), 51–55 | DOI | MR

[13] A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, Comm. Math. Phys., 79:4 (1981), 473–488 | DOI | MR | Zbl

[14] S. Lombardo, J. A. Sanders, Comm. Math. Phys., 299:3 (2010), 793–824, arXiv: 0912.1697 | DOI | MR | Zbl

[15] S. Lombardo, A. V. Mikhailov, J. Phys. A, 37:31 (2004), 7727–7742, arXiv: nlin/0404013 | DOI | MR | Zbl

[16] S. Lombardo, A. Mikhailov, Comm. Math. Phys., 258:1 (2005), 179–202, arXiv: math-ph/0407048 | DOI | MR | Zbl

[17] M. Gürses, A. Karasu, V. V. Sokolov, J. Math. Phys., 40:12 (1999), 6473–6490, arXiv: solv-int/9909003 | DOI | MR | Zbl

[18] I. Ts. Golubchik, V. V. Sokolov, TMF, 124:1 (2000), 62–71 | DOI | MR | Zbl

[19] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | MR | Zbl

[20] A. V. Mikhailov, V. V. Sokolov, “Symmetries of differential equations and the problem of integrability”, Integrability, Lecture Notes in Phys., 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 19–88 | DOI | MR | Zbl

[21] V. Gerdjikov, A. V. Mikhailov, T. I. Valchev, J. Phys. A, 43:43 (2010), 434015, 13 pp. | DOI | MR | Zbl

[22] V. S. Gerdjikov, A. V. Mikhailov, T. I. Valchev, J. Geom. Symmetry Phys., 20 (2010), 1–34 | Zbl

[23] J. P. Wang, J. Math. Phys., 50:2 (2009), 023506, 25 pp., arXiv: 0809.3899 | DOI | MR | Zbl

[24] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure Appl. Math., 80, Academic Press, New York, 1978 | MR | Zbl