@article{TMF_2011_167_3_a5,
author = {V. S. Gerdjikov and G. G. Grahovski and A. V. Mikhailov and T. I. Valchev},
title = {Rational bundles and recursion operators for integrable equations on {A.III-type} symmetric spaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {394--406},
year = {2011},
volume = {167},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a5/}
}
TY - JOUR AU - V. S. Gerdjikov AU - G. G. Grahovski AU - A. V. Mikhailov AU - T. I. Valchev TI - Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 394 EP - 406 VL - 167 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a5/ LA - ru ID - TMF_2011_167_3_a5 ER -
%0 Journal Article %A V. S. Gerdjikov %A G. G. Grahovski %A A. V. Mikhailov %A T. I. Valchev %T Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces %J Teoretičeskaâ i matematičeskaâ fizika %D 2011 %P 394-406 %V 167 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a5/ %G ru %F TMF_2011_167_3_a5
V. S. Gerdjikov; G. G. Grahovski; A. V. Mikhailov; T. I. Valchev. Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 394-406. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a5/
[1] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, ed. R. V. Gamkrelidze, VINITI, M., 1984, 81–180 | DOI | MR | Zbl
[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl
[3] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl
[4] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Phys., 748, Springer, Berlin, 2008 | DOI | MR | Zbl
[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl
[6] D. J. Kaup, A. C. Newell, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR | Zbl
[7] V. S. Gerdžikov, E. H. Hristov, Bulgar. J. Phys., 7:2 (1980), 119–133 | MR
[8] V. S. Gerdjikov, M. I. Ivanov, Bulgar. J. Phys., 10:2 (1983), 130–143 | MR
[9] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443–448
[10] A. V. Mikhailov, Pisma v ZhETF, 32:2 (1980), 187–192
[11] A. V. Mikhailov, Physica D, 3:1–2 (1981), 73–117 | DOI | Zbl
[12] A. V. Mikhailov, Phys. Lett. A, 92:2 (1982), 51–55 | DOI | MR
[13] A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, Comm. Math. Phys., 79:4 (1981), 473–488 | DOI | MR | Zbl
[14] S. Lombardo, J. A. Sanders, Comm. Math. Phys., 299:3 (2010), 793–824, arXiv: 0912.1697 | DOI | MR | Zbl
[15] S. Lombardo, A. V. Mikhailov, J. Phys. A, 37:31 (2004), 7727–7742, arXiv: nlin/0404013 | DOI | MR | Zbl
[16] S. Lombardo, A. Mikhailov, Comm. Math. Phys., 258:1 (2005), 179–202, arXiv: math-ph/0407048 | DOI | MR | Zbl
[17] M. Gürses, A. Karasu, V. V. Sokolov, J. Math. Phys., 40:12 (1999), 6473–6490, arXiv: solv-int/9909003 | DOI | MR | Zbl
[18] I. Ts. Golubchik, V. V. Sokolov, TMF, 124:1 (2000), 62–71 | DOI | MR | Zbl
[19] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | MR | Zbl
[20] A. V. Mikhailov, V. V. Sokolov, “Symmetries of differential equations and the problem of integrability”, Integrability, Lecture Notes in Phys., 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 19–88 | DOI | MR | Zbl
[21] V. Gerdjikov, A. V. Mikhailov, T. I. Valchev, J. Phys. A, 43:43 (2010), 434015, 13 pp. | DOI | MR | Zbl
[22] V. S. Gerdjikov, A. V. Mikhailov, T. I. Valchev, J. Geom. Symmetry Phys., 20 (2010), 1–34 | Zbl
[23] J. P. Wang, J. Math. Phys., 50:2 (2009), 023506, 25 pp., arXiv: 0809.3899 | DOI | MR | Zbl
[24] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure Appl. Math., 80, Academic Press, New York, 1978 | MR | Zbl