New exact solutions of two-dimensional integrable equations using the $\bar\partial$-dressing method
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 377-393 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review new classes of exact solutions with functional parameters with constant asymptotic values at infinity of the Nizhnik–Veselov–Novikov equation and new classes of exact solutions with functional parameters of two-dimensional generalizations of the Kaup–Kupershmidt and Sawada–Kotera equations, constructed using the Zakharov–Manakov $\bar\partial$-dressing method. We present subclasses of multisoliton and periodic solutions of these equations and give examples of linear superpositions of exact solutions of the Nizhnik–Veselov–Novikov equation.
Keywords: Nizhnik–Veselov–Novikov equation, two-dimensional Kaup–Kupershmidt equation, two-dimensional Sawada–Kotera equation, solutions with functional parameters, two-dimensional stationary Schrödinger equation, transparent potential.
Mots-clés : soliton
@article{TMF_2011_167_3_a4,
     author = {V. G. Dubrovsky and A. V. Topovsky and M. Yu. Basalaev},
     title = {New exact solutions of two-dimensional integrable equations using the~$\bar\partial$-dressing method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--393},
     year = {2011},
     volume = {167},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a4/}
}
TY  - JOUR
AU  - V. G. Dubrovsky
AU  - A. V. Topovsky
AU  - M. Yu. Basalaev
TI  - New exact solutions of two-dimensional integrable equations using the $\bar\partial$-dressing method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 377
EP  - 393
VL  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a4/
LA  - ru
ID  - TMF_2011_167_3_a4
ER  - 
%0 Journal Article
%A V. G. Dubrovsky
%A A. V. Topovsky
%A M. Yu. Basalaev
%T New exact solutions of two-dimensional integrable equations using the $\bar\partial$-dressing method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 377-393
%V 167
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a4/
%G ru
%F TMF_2011_167_3_a4
V. G. Dubrovsky; A. V. Topovsky; M. Yu. Basalaev. New exact solutions of two-dimensional integrable equations using the $\bar\partial$-dressing method. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 377-393. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a4/

[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[2] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[3] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations: The Inverse Spectral Transform in $2+1$ Dimensions, Plenum Press, New York, 1992 | MR | Zbl

[4] B. G. Konopelchenko, Solitons in Multidimensions: Inverse Spectral Transform Method, World Sci., Singapore, 1993 | MR | Zbl

[5] S. V. Manakov, Physica D, 3:1–2 (1981), 420–427 | DOI

[6] R. Beals, R. R. Coifman, Physica D, 18:1–3 (1986), 242–249 | DOI | MR | Zbl

[7] V. E. Zakharov, S. V. Manakov, Funkts. analiz i ego pril., 19:2 (1985), 11–25 | DOI | MR | Zbl

[8] V. E. Zakharov, “Commutating operators and nonlocal $\bar\partial$-problem”, Nonlinear and Turbulent Processes in Physics, Proc. III Int. Workshop, v. 1, Naukova Dumka, Kiev, 1988, 152–154 | Zbl

[9] L. V. Bogdanov, S. V. Manakov, J. Phys. A, 21:10 (1988), L537–L544 | DOI | MR | Zbl

[10] A. S. Fokas, V. E. Zakharov, J. Nonlinear Sci., 2:1 (1992), 109–134 | DOI | MR | Zbl

[11] L. P. Nizhnik, Dokl. AN SSSR, 254:2 (1980), 332–335 | MR | Zbl

[12] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[13] B. G. Konopelchenko, V. G. Dubrovsky, Phys. Lett. A, 102:1–2 (1984), 15–17 | DOI | MR

[14] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[15] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl

[16] A. B. Dubrovin, I. M. Krichever, S. P. Novikov, Dokl. AN SSSR, 229:1 (1976), 15–18 | MR | Zbl

[17] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[18] P. G. Grinevich, R. G. Novikov, Funkts. analiz i ego pril., 19:4 (1985), 32–42 | MR | Zbl

[19] P. G. Grinevich, S. V. Manakov, Funkts. analiz i ego pril., 20:2 (1986), 14–24 | DOI | MR | Zbl

[20] P. G. Grinevich, S. P. Novikov, “Inverse scattering problem for the two-dimensional Schrödinger operator at a fixed negative energy and generalized analytic functions”, Plasma Theory and Nonlinear and Turbulent Processes in Physics, v. 1, eds. V. G. Bar'yakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, V. E. Zakharov, World Sci., Singapore, 1988, 58–85 | MR | Zbl

[21] P. G. Grinevich, S. P. Novikov, Funkts. analiz i ego pril., 22:1 (1988), 23–33 | DOI | MR | Zbl

[22] P. G. Grinevich, TMF, 69:2 (1986), 307–310 | DOI | MR | Zbl

[23] V. G. Dubrovsky, I. B. Formusatik, J. Phys. A, 34:9 (2001), 1837–1851 | DOI | MR | Zbl

[24] V. G. Dubrovsky, I. B. Formusatik, Phys. Lett. A, 313:1–2 (2003), 68–76 | DOI | MR | Zbl

[25] V. G. Dubrovsky, Ya. V. Lisitsyn, Phys. Lett. A, 295:4 (2002), 198–207 | DOI | MR | Zbl

[26] V. G. Dubrovskii, A. V. Topovskii, M. Yu. Basalaev, TMF, 165:2 (2010), 272–294 | DOI

[27] V. G. Dubrovsky, A. V. Topovsky, M. Yu. Basalaev, J. Math. Phys., 51:9 (2010), 092106, 22 pp. | DOI | MR | Zbl

[28] M. Yu. Basalaev, V. G. Dubrovsky, A. V. Topovsky, New exact solutions with constant asymptotic values at infinity of the NVN integrable nonlinear evolution equation via $\bar\partial$-dressing method, arXiv: 0912.2155