A new goldfish model
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 364-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new integrable (indeed, solvable) model of goldfish type is identified, and some of its properties are discussed. A version of its Newtonian equations of motion reads as follows: $$ \ddot{z}_n=\frac{\beta\dot{z}_n(\dot{z}_n+\eta)}{1+\beta z_n}+ \sum_{m=1,m\ne n}^N\frac{(\dot{z}_n-\beta\eta z_n) (\dot{z}_m-\beta\eta z_m)\bigl[2+\beta(z_n+z_m)\bigr]} {(z_n-z_m)(1+\beta z_m)}, $$ where $z_n\equiv z_n(t)$ are the $N$ dependent variables, $t$ is the independent variable (“time”), the dots indicate time differentiations, and $\beta$, $\eta$ are two arbitrary constants.
Keywords: integrable dynamical system, solvable dynamical system, integrable Newtonian many-body problem.
@article{TMF_2011_167_3_a3,
     author = {F. Calogero},
     title = {A~new goldfish model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {364--376},
     year = {2011},
     volume = {167},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a3/}
}
TY  - JOUR
AU  - F. Calogero
TI  - A new goldfish model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 364
EP  - 376
VL  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a3/
LA  - ru
ID  - TMF_2011_167_3_a3
ER  - 
%0 Journal Article
%A F. Calogero
%T A new goldfish model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 364-376
%V 167
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a3/
%G ru
%F TMF_2011_167_3_a3
F. Calogero. A new goldfish model. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 364-376. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a3/

[1] F. Calogero, Physica D, 152–153 (2001), 78–84 | DOI | MR | Zbl

[2] S. N. M. Ruijsenaars, H. Schneider, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR | Zbl

[3] F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lecture Notes Phys. Monogr., 66, Springer, Berlin, 2001 | DOI | MR | Zbl

[4] F. Calogero, Isochronous Systems, Oxford Univ. Press, Oxford, 2008 | MR | Zbl

[5] D. Gómez-Ullate, M. Sommacal, J. Nonlinear Math. Phys., 12, Suppl. 1 (2005), 351–362 | DOI | MR

[6] F. Calogero, J. Nonlinear Math. Phys., 17:3 (2010), 397–414 | DOI | MR | Zbl

[7] F. Calogero, “Discrete-time goldfishing”, SIGMA, (submitted 4 May 2011; in press)

[8] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR | MR | Zbl

[9] S. Ahmed, M. Bruschi, F. Calogero, M. A. Olshanetsky, A. M. Perelomov, Nuovo Cimento B, 49:2 (1979), 173–199 | DOI | MR