Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 514-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a chain of $SU(2)_4$ anyons with transitions to a topologically ordered phase state. For half-integer and integer indices of the type of strongly correlated excitations, we find an effective low-energy Hamiltonian that is an analogue of the standard Heisenberg Hamiltonian for quantum magnets. We describe the properties of the Hilbert spaces of the system eigenstates. For the Drinfeld quantum $SU(2)_k \times\overline{SU(2)_k}$ doubles, we use numerical computations to show that the largest eigenvalues of the adjacency matrix for graphs that are extended Dynkin diagrams coincide with the total quantum dimensions for the levels $k=2,3,4,5$. We also formulate a hypothesis about the reason for the universal behavior of the system in the long-wave limit.
Keywords: modular tensor category, quantum double, anyon.
@article{TMF_2011_167_3_a14,
     author = {V. A. Verbus and L. Martina and A. P. Protogenov},
     title = {Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {514--528},
     year = {2011},
     volume = {167},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a14/}
}
TY  - JOUR
AU  - V. A. Verbus
AU  - L. Martina
AU  - A. P. Protogenov
TI  - Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 514
EP  - 528
VL  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a14/
LA  - ru
ID  - TMF_2011_167_3_a14
ER  - 
%0 Journal Article
%A V. A. Verbus
%A L. Martina
%A A. P. Protogenov
%T Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 514-528
%V 167
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a14/
%G ru
%F TMF_2011_167_3_a14
V. A. Verbus; L. Martina; A. P. Protogenov. Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 514-528. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a14/

[1] C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Modern Phys., 80:3 (2008), 1083–1159, arXiv: 0707.1889 | DOI | MR | Zbl

[2] E. Rowell, R. Stong, Z. Wang, Comm. Math. Phys., 292:2 (2009), 343–389, arXiv: 0712.1377 | DOI | MR | Zbl

[3] S. Sachdev, Quantum Phase Transitions, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[4] J. Preskill, Topological quantum computation, lecture notes, , 2004\par http://www.theory.caltech.edu/~preskill/ph219/ topological.ps

[5] A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev, Z. Wang, M. H. Freedman, Phys. Rev. Lett., 98:16 (2007), 160409, 4 pp., arXiv: cond-mat/0612341 | DOI

[6] S. Trebst, M. Troyer, Z. Wang, A. W. W. Ludwig, Progr. Theoret. Phys. Suppl., 176 (2008), 384–407, arXiv: 0902.3275 | DOI | Zbl

[7] C. Gils, E. Ardonne, S. Trebst, A. W. W. Ludwig, M. Troyer, Z. Wang, Phys. Rev. Lett., 103:7 (2009), 070401, 4 pp., arXiv: 0810.2277 | DOI

[8] M. H. Freedman, M. Larsen, Z. Wang, Comm. Math. Phys., 227:3 (2002), 605–622 | DOI | MR | Zbl

[9] M. H. Freedman, M. J. Larsen, Z. Wang, Comm. Math. Phys., 228:1 (2002), 177–199, arXiv: math/0103200 | DOI | MR | Zbl

[10] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symétries Quantiques, eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219, arXiv: hep-th/9605187 | MR | Zbl

[11] A. Yu. Kitaev, Ann. Phys., 303:1 (2003), 2–30, arXiv: quant-ph/9707021 | DOI | MR | Zbl

[12] S. Trebst, E. Ardonne, A. Feiguin, D. A. Huse, A. W. W. Ludwig, M. Troyer, Phys. Rev. Lett., 101:5 (2008), 050401, 4 pp., arXiv: 0801.4602 | DOI

[13] P. Bonderson, K. Shtengel, J. K. Slingerland, Ann. Phys., 323:11 (2008), 2709–2755, arXiv: 0707.4206 | DOI | MR | Zbl

[14] P. Bonderson, M. Freedman, C. Nayak, Ann. Phys., 324:4 (2009), 787–826, arXiv: 0808.1933 | DOI | MR | Zbl

[15] P. Bonderson, Phys. Rev. Lett., 103:11 (2009), 110403, 4 pp., arXiv: 0905.2726 | DOI

[16] F. A. Bais, J. K. Slingerland, Phys. Rev. B, 79:4 (2009), 045316, 27 pp., arXiv: 0808.0627 | DOI

[17] F. A. Bais, J. K. Slingerland, S. M. Haaker, Phys. Rev. Lett., 102:22 (2009), 220403, 4 pp., arXiv: 0812.4596 | DOI | MR

[18] C. Gils, S. Trebst, A. Kitaev, A. W. W. Ludwig, M. Troyer, Z. Wang, Nature Phys., 5:11 (2009), 834–839, arXiv: 0906.1579 | DOI

[19] S. Trebst, P. Werner, M. Troyer, K. Shtengel, C. Nayak, Phys. Rev. Lett., 98:7 (2007), 070602, 4 pp., arXiv: cond-mat/0609048 | DOI

[20] H. Yao, S. A. Kivelson, Phys. Rev. Lett., 99:24 (2007), 247203, 4 pp., arXiv: 0708.0040 | DOI

[21] A. Yu. Kitaev, Ann. Phys., 321:1 (2006), 2–111, arXiv: cond-mat/0506438 | DOI | MR | Zbl

[22] G. Baskaran, S. Mandal, R. Shankar, Phys. Rev. Lett., 98:24 (2007), 247201, 4 pp., arXiv: cond-mat/0611547 | DOI

[23] S.-P. Kou, X.-G. Wen, Projected $p$-wave superconducting wave-functions for topological orders, arXiv: 0711.0571

[24] D. J. Klein, J. Phys. A, 15:2 (1982), 661–671 | DOI | MR

[25] H. N. V. Temperley, E. H. Lieb, Proc. R. Soc. London Ser. A, 322:1549 (1971), 251–280 | DOI | MR | Zbl

[26] V. Jones, C. R. Acad. Sci. Paris Sér. I Math., 298:20 (1984), 505–508 | MR | Zbl

[27] A. Kuniba, Y. Akutsu, M. Wadati, J. Phys. Soc. Japan, 55:10 (1986), 3285–3288 | DOI | MR

[28] V. Pasquier, Nucl. Phys. B, 285:1 (1987), 162–172 | DOI | MR

[29] H. Furusho, Ann. Math., 171:1 (2010), 545–556, arXiv: math/0702128 | DOI | MR | Zbl

[30] A. Kitaev, J. Preskill, Phys. Rev. Lett., 96:11 (2006), 110404, 4 pp., arXiv: hep-th/0510092 | DOI | MR

[31] M. Levin, X.-G. Wen, Phys. Rev. Lett., 96:11 (2006), 110405, 4 pp., arXiv: cond-mat/0510613 | DOI

[32] P. Ginsparg, Nucl. Phys. B, 295:2 (1988), 153–170 | DOI | MR

[33] C. Gils, J. Stat. Mech., 2009:7 (2009), P07019, 21 pp., arXiv: 0902.0168 | DOI

[34] G. E. Andrews, R. J. Baxter, P. J. Forrester, J. Stat. Phys., 35:3–4 (1984), 193–266 | DOI | MR | Zbl

[35] P. Fendley, J. Phys. A, 39:50 (2006), 15445–15475, arXiv: cond-mat/0609435 | DOI | MR | Zbl

[36] R. M. Kashaev, Heisenberg double and pentagon relation, arXiv: q-alg/9503005

[37] I. B. Frenkel, V. G. Turaev, “Trigonometric solutions of the Yang–Baxter equation, nets, and hypergeometric functions”, Functional Analysis on the Eve of the 21st Century, v. 1, Progr. Math., 131, eds. S. Gindikin, J. Lepowsky, R. L. Wilson, Birkhauser, Boston, MA, 1995, 65–118 | MR | Zbl

[38] P. Fendley, E. Fradkin, Phys. Rev. B, 72:2 (2005), 024412, 19 pp., arXiv: cond-mat/0502071 | DOI | MR

[39] Z.-C. Gu, X.-G. Wen, Phys. Rev. B, 80:15 (2009), 155131, 23 pp., arXiv: 0903.1069 | DOI

[40] M. Levin, C. P. Nave, Phys. Rev. Lett., 99:12 (2007), 120601, 4 pp., arXiv: cond-mat/0611687 | DOI