Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 514-528

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a chain of $SU(2)_4$ anyons with transitions to a topologically ordered phase state. For half-integer and integer indices of the type of strongly correlated excitations, we find an effective low-energy Hamiltonian that is an analogue of the standard Heisenberg Hamiltonian for quantum magnets. We describe the properties of the Hilbert spaces of the system eigenstates. For the Drinfeld quantum $SU(2)_k \times\overline{SU(2)_k}$ doubles, we use numerical computations to show that the largest eigenvalues of the adjacency matrix for graphs that are extended Dynkin diagrams coincide with the total quantum dimensions for the levels $k=2,3,4,5$. We also formulate a hypothesis about the reason for the universal behavior of the system in the long-wave limit.
Keywords: modular tensor category, quantum double, anyon.
@article{TMF_2011_167_3_a14,
     author = {V. A. Verbus and L. Martina and A. P. Protogenov},
     title = {Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {514--528},
     publisher = {mathdoc},
     volume = {167},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a14/}
}
TY  - JOUR
AU  - V. A. Verbus
AU  - L. Martina
AU  - A. P. Protogenov
TI  - Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 514
EP  - 528
VL  - 167
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a14/
LA  - ru
ID  - TMF_2011_167_3_a14
ER  - 
%0 Journal Article
%A V. A. Verbus
%A L. Martina
%A A. P. Protogenov
%T Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 514-528
%V 167
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a14/
%G ru
%F TMF_2011_167_3_a14
V. A. Verbus; L. Martina; A. P. Protogenov. Chain of interacting $SU(2)_4$ anyons and quantum $SU(2)_k\times\overline{SU(2)_k}$ doubles. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 514-528. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a14/