Integrability of differential--difference equations with discrete kinks
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 496-513
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss a series of models introduced by Barashenkov, Oxtoby, and Pelinovsky to describe some discrete approximations of the $\phi^4$ theory that preserve traveling kink solutions. Using the multiple scale test, we show that they have some integrability properties because they pass the A$_1$ and A$_2$ conditions, but they are nonintegrable because they fail the A$_3$ conditions.
Keywords:
lattice equation, kink solution, integrable equation.
Mots-clés : multiscale expansion
Mots-clés : multiscale expansion
@article{TMF_2011_167_3_a13,
author = {Ch. Scimiterna and D. Levi},
title = {Integrability of differential--difference equations with discrete kinks},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {496--513},
publisher = {mathdoc},
volume = {167},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a13/}
}
TY - JOUR AU - Ch. Scimiterna AU - D. Levi TI - Integrability of differential--difference equations with discrete kinks JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 496 EP - 513 VL - 167 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a13/ LA - ru ID - TMF_2011_167_3_a13 ER -
Ch. Scimiterna; D. Levi. Integrability of differential--difference equations with discrete kinks. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 496-513. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a13/