Integrability of differential–difference equations with discrete kinks
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 496-513 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a series of models introduced by Barashenkov, Oxtoby, and Pelinovsky to describe some discrete approximations of the $\phi^4$ theory that preserve traveling kink solutions. Using the multiple scale test, we show that they have some integrability properties because they pass the A$_1$ and A$_2$ conditions, but they are nonintegrable because they fail the A$_3$ conditions.
Keywords: lattice equation, kink solution, integrable equation.
Mots-clés : multiscale expansion
@article{TMF_2011_167_3_a13,
     author = {Ch. Scimiterna and D. Levi},
     title = {Integrability of differential{\textendash}difference equations with discrete kinks},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {496--513},
     year = {2011},
     volume = {167},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a13/}
}
TY  - JOUR
AU  - Ch. Scimiterna
AU  - D. Levi
TI  - Integrability of differential–difference equations with discrete kinks
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 496
EP  - 513
VL  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a13/
LA  - ru
ID  - TMF_2011_167_3_a13
ER  - 
%0 Journal Article
%A Ch. Scimiterna
%A D. Levi
%T Integrability of differential–difference equations with discrete kinks
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 496-513
%V 167
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a13/
%G ru
%F TMF_2011_167_3_a13
Ch. Scimiterna; D. Levi. Integrability of differential–difference equations with discrete kinks. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 496-513. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a13/

[1] I. V. Barashenkov, O. F. Oxtoby, D. E. Pelinovsky, Phys. Rev. E, 72:3 (2005), 035602, 4 pp., arXiv: nlin/0506007 | DOI | MR

[2] A. R. Bishop, T. Schneider (eds.), Solitons and Condensed Matter Physics, Springer Ser. Solid-State Sci., 8, Springer, Berlin, 1978 | DOI | MR | Zbl

[3] R. Rajaraman, Solitons and Instantons, North-Holland, Amsterdam, 1982 | MR | Zbl

[4] M. J. Rice, A. R. Bishop, J. A. Krumhansl, S. E. Trullinger, Phys. Rev. Lett., 36:8 (1976), 432–435 ; W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. B, 22:4 (1980), 2099–2111 ; H. Morikawa, I. Matsuda, S. Hasegawa, Phys. Rev. B, 70:8 (2004), 085412, 6 pp. | DOI | DOI | DOI

[5] J. F. Currie, A. Blumen, M. A. Collins, J. Ross, Phys. Rev. B, 19:7 (1979), 3645–3655 | DOI

[6] S. V. Dmitriev, T. Shigenari, A. A. Vasiliev, K. Abe, Phys. Rev. B, 55:13 (1997), 8155–8164 | DOI

[7] I. Chochliouros, J. Pouget, J. Phys., 7:46 (1995), 8741–8756 | DOI

[8] V. M. Karpan, Y. Zolotaryuk, P. L. Christiansen, A. V. Zolotaryuk, Phys. Rev. E, 70:5 (2004), 056602, 11 pp. | DOI

[9] J. A. Combs, S. Yip, Phys. Rev. B, 28:12 (1983), 6873–6885 | DOI

[10] P. Prelovek, I. Sega, J. Phys. C, 14:36 (1981), 5609–5614 | DOI

[11] S. Flach, Y. Zolotaryuk, K. Kladko, Phys. Rev. E, 59:5 (1999), 6105–6115, arXiv: patt-sol/9812004 | DOI | MR

[12] P. G. Kevrekidis, Physica D, 183:1–2 (2003), 68–86 | DOI | MR | Zbl

[13] Yu. S. Kivshar, A. Sänchez, L. Väzquez, Phys. Rev. A, 45:2 (1992), 1207–1212 ; S. Flach, C. R. Willis, Phys. Rev. E, 47:6 (1993), 4447–4456 ; S. Flach, K. Kladko, Phys. Rev. E, 54:3 (1996), 2912–2916, arXiv: ; J. C. Comte, P. Marquié, M. Remoissenet, Phys. Rev. E, 60:6 (1999), 7484–7489 ; P. Maniadis, G. P. Tsironis, A. R. Bishop, A. V. Zolotaryuk, Phys. Rev. E, 60:6 (1999), 7618–7621 ; P. G. Kevrekidis, M. I. Weinstein, Physica D, 142:1–2 (2000), 113–152, arXiv: ; A. B. Adib, C. A. S. Almeida, Phys. Rev. E, 64:3 (2001), 037701, 4 pp., arXiv: cond-mat/9709069nlin/0003006hep-th/0104225 | DOI | MR | DOI | DOI | DOI | DOI | DOI | MR | Zbl | DOI

[14] J. M. Speight, R. S. Ward, Nonlinearity, 7:2 (1994), 475–484, arXiv: patt-sol/9911008 | DOI | MR | Zbl

[15] J. M. Speight, Nonlinearity, 10:6 (1997), 1615–1625, arXiv: patt-sol/9703005 | DOI | MR | Zbl

[16] J. M. Speight, Nonlinearity, 12:5 (1999), 1373–1387, arXiv: hep-th/9812064 | DOI | MR | Zbl

[17] D. Levi, C. Scimiterna, Appl. Anal., 89:4 (2010), 507–527 | DOI | MR | Zbl

[18] C. Scimiterna, Multiscale techniques for nonlinear difference equations, Ph.D. thesis, Roma Tre University, 2009 http://dspace-roma3.caspur.it/handle/2307/408

[19] D. Levi, J. Phys. A, 38:35 (2005), 7677–7689, arXiv: nlin/0505061 | DOI | MR | Zbl

[20] F. Nijhoff, H. Capel, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR | Zbl

[21] A. Ramani, chastnoe soobschenie, 2006

[22] C. Viallet, chastnoe soobschenie, 2006

[23] A. Degasperis, S. V. Manakov, P. M. Santini, Physica D, 100:1–2 (1997), 187–211 | DOI | MR | Zbl

[24] Y. Kodama, A. V. Mikhailov, “Obstacles to asymptotic integrability”, Algebraic Aspects of Integrable Systems, Progr. Differ. Equ. Appl., 26, Birkhäuser, Boston, MA, 1997, 173–204 ; Y. Hiraoka, Y. Kodama, “Normal form and solitons”, Integrability, Lecture Notes in Phys., 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 175–214 | MR | Zbl | DOI | MR | Zbl

[25] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory, eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 ; A. Degasperis, “Multiscale expansion and integrability of dispersive wave equations”, Integrability, ed. A. V. Mikhailov, Springer, Berlin, 2009, 215–244 | MR | Zbl | DOI | MR | Zbl

[26] C. Scimiterna, D. Levi, SIGMA, 6 (2010), 070, 17 pp. | DOI | MR | Zbl

[27] D. Levi, P. Winternitz, J. Phys. A, 39:2 (2006), R1–R63, arXiv: nlin/0502004 | DOI | MR | Zbl