Integrable twofold hierarchy of perturbed equations and application to optical soliton dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 465-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct well-known integrable equations with their Lax pairs from the corresponding linear equations using our nonlinearization scheme. Using negative powers in the spectral flow to deform the time Lax operator, we find a class of perturbations that unlike the usual perturbations, which spoil the system integrability, exhibit a twofold integrable hierarchy, including those for the KdV, modified KdV, sine-Gordon, nonlinear Schrödinger (NLS), and derivative NLS equations. We discover hidden possibilities of using the perturbed hierarchy of the NLS equations to amplify and control optical solitons propagating through a fiber in a doped nonlinear resonant medium.
Mots-clés : Lax pair
Keywords: nonlinearization of linear equation, nonholonomic deformation, optical soliton, nonlinear Schrödinger soliton, self-induced transparency soliton, integrable hierarchy.
@article{TMF_2011_167_3_a10,
     author = {A. Kundu},
     title = {Integrable twofold hierarchy of perturbed equations and application to optical soliton dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {465--478},
     year = {2011},
     volume = {167},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a10/}
}
TY  - JOUR
AU  - A. Kundu
TI  - Integrable twofold hierarchy of perturbed equations and application to optical soliton dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 465
EP  - 478
VL  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a10/
LA  - ru
ID  - TMF_2011_167_3_a10
ER  - 
%0 Journal Article
%A A. Kundu
%T Integrable twofold hierarchy of perturbed equations and application to optical soliton dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 465-478
%V 167
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a10/
%G ru
%F TMF_2011_167_3_a10
A. Kundu. Integrable twofold hierarchy of perturbed equations and application to optical soliton dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 3, pp. 465-478. http://geodesic.mathdoc.fr/item/TMF_2011_167_3_a10/

[1] A. Kundu (ed.), Classical and Quantum Nonlinear Integrable Systems: Theory and Applications, IOP, Bristol, 2003; M. Boiti, L. Martina, F. Pempinelli (eds.), Proc. NEEDS'91, World Sci., Singapore, 1992 | MR | Zbl

[2] B. A. Kupershmidt, Phys. Lett. A, 372:15 (2008), 2634–2639, arXiv: 0709.3848 | DOI | MR | Zbl

[3] A. Kundu, J. Math. Phys., 50:10 (2009), 102702, 16 pp., arXiv: 0711.0878 | DOI | MR | Zbl

[4] A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich, R. Turhan, J. Math. Phys., 49:7 (2008), 073516, 10 pp., arXiv: 0708.3247 | DOI | MR

[5] J. Lenells, A. S. Fokas, Nonlinearity, 22:1 (2009), 11–27 | DOI | MR | Zbl

[6] A. Kundu, R. Sahadevan, L. Nalinidevi, J. Phys. A, 42:11 (2009), 115213, 13 pp., arXiv: 0811.0924 | DOI | MR | Zbl

[7] A. Kundu, J. Math. Phys., 51:2 (2010), 022901, 17 pp., arXiv: 0910.0383 | DOI | MR | Zbl

[8] A. Kundu, J. Phys. A, 41:49 (2008), 495201, 7 pp., arXiv: 0806.2743 | DOI | MR

[9] V. K. Mel'nikov, Phys. Lett. A, 133:9 (1988), 493–496 ; Inverse Problems, 6:2 (1990), 233–246 ; 8:1 (1992), 133–147 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[10] J. F. Gomes, G. R. de Melo, L. H. Ymai, A. H. Zimerman, J. Phys. A, 43:39 (2010), 395203, 9 pp., arXiv: 1004.3488 | DOI | MR | Zbl

[11] Z. Qiao, W. Strampp, Physica A, 313:3–4 (2002), 365–380, arXiv: nlin/0201065 | DOI | MR | Zbl

[12] G. P. Agrawal, Fiber-Optic Communication Systems, Wiley, New York, 2002 ; V. Alwyn, “Fiber-Optic Technologies”, Optical Network Design and Implementation, Cisco Press, Indianapolis, 2004; Encyclopedia of Laser Physics and Technology, , Virtual Web-Library, RP Photonics http://www.rp-photonics.com/encyclopedia.html

[13] G. P. Agrawal, Nonlinear Fiber Optics, Acad. Press, New York, 2006

[14] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett., 45:13 (1980), 1095–1098 ; A. Hasegawa, F. D. Tappert, Appl. Phys. Lett., 23:3 (1973), 142–144 | DOI | DOI

[15] S. L. McCall, E. L. Hahn, Phys. Rev. Lett., 18:21 (1967), 908–911 ; Phys. Rev., 183:2 (1969), 457–485 | DOI | MR | DOI

[16] G. L. Lamb Jr., Rev. Modern Phys., 43:2 (1971), 99–124 | DOI | MR

[17] A. I. Maimistov, E. A. Manyakin, ZhETF, 85:4 (1983), 1177–1181

[18] M. Nakazawa, E. Yamada, H. Kubota, Phys. Rev. Lett., 66:20 (1991), 2625–2628 | DOI

[19] M. Nakazawa, E. Yamada, H. Kubota, Phys. Rev. A, 44:9 (1991), 5973–5987 | DOI

[20] S. Kakei, J. Satsuma, J. Phys. Soc. Japan, 63:3 (1994), 885–894 | DOI | MR | Zbl

[21] K. Porsezian, K. Nakkeeran, Phys. Rev. Lett., 74:15 (1995), 2941–2944 | DOI

[22] A. Kundu, Hidden possibilities in controlling optical soliton in fiber guided doped resonant medium, arXiv: 1009.2641

[23] A. Kundu, SIGMA, 6 (2010), 080, 9 pp. | DOI | Zbl