Singularity of the “swallow-tail” type and the glass–glass transition in a system of collapsing hard spheres
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 284-294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the mode-coupling approximation, we consider the transition to the glass state in a system of collapsing hard spheres (a system with the hard-core potential to which a repulsive step is added) We propose an approximation for the structure factor of the system, which we use to construct the phase diagram of the transition to the glass state. We show that there exists a maximum on the liquid–glass curve corresponding to the reentrant transition to the glass state in the system. In the framework of the proposed model, we consider bifurcations of solutions of the equations describing the transition to the glass state and show that there exist bifurcations of the “swallow-tail” type corresponding to the glass–glass transition.
Keywords: mode-coupling theory
Mots-clés : liquid–glass transition, glass–glass transition.
@article{TMF_2011_167_2_a9,
     author = {V. N. Ryzhov and E. E. Tareeva and Yu. D. Fomin},
     title = {Singularity of the~{\textquotedblleft}swallow-tail{\textquotedblright} type and the~glass{\textendash}glass transition in a~system of collapsing hard spheres},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {284--294},
     year = {2011},
     volume = {167},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a9/}
}
TY  - JOUR
AU  - V. N. Ryzhov
AU  - E. E. Tareeva
AU  - Yu. D. Fomin
TI  - Singularity of the “swallow-tail” type and the glass–glass transition in a system of collapsing hard spheres
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 284
EP  - 294
VL  - 167
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a9/
LA  - ru
ID  - TMF_2011_167_2_a9
ER  - 
%0 Journal Article
%A V. N. Ryzhov
%A E. E. Tareeva
%A Yu. D. Fomin
%T Singularity of the “swallow-tail” type and the glass–glass transition in a system of collapsing hard spheres
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 284-294
%V 167
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a9/
%G ru
%F TMF_2011_167_2_a9
V. N. Ryzhov; E. E. Tareeva; Yu. D. Fomin. Singularity of the “swallow-tail” type and the glass–glass transition in a system of collapsing hard spheres. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 284-294. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a9/

[1] U. Bengtzelius, W. Götze, A. Sjolander, J. Phys. C, 17:33 (1984), 5915–5934 | DOI

[2] W. Götze, L. Sjogren, Rep. Progr. Phys., 55:3 (1992), 241–376 | DOI

[3] W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, Internat. Ser. Monogr. Phys., 143, Oxford Univ. Press, Oxford, 2009 | MR | Zbl

[4] J. P. Hansen, I. R. McDonald, Theory of Simple Liquids, Academic Press, London, 1990 | Zbl

[5] P. Shankar Das, Rev. Modern Phys., 76:3 (2004), 785–851 | DOI

[6] L. Fabbian, W. Götze, F. Sciortino, P. Tartaglia, F. Thiery, Phys. Rev. E, 59:2 (1999), R1347–R1350, arXiv: ; Erratum: 60:2, 2430 cond-mat/9805392 | DOI | DOI

[7] K. Dawson, G. Foffi, M. Fuchs, W. Götze, F. Sciortino, M. Sperl, P. Tartaglia, Th. Voigtmann, E. Zaccarelli, Phys. Rev. E, 63:1 (2000), 011401, 17 pp., arXiv: cond-mat/0008358 | DOI

[8] E. Zaccarelli, G. Foffi, K. A. Dawson, F. Sciortino, P. Tartaglia, Phys. Rev. E, 63:3 (2001), 031501, 11 pp., arXiv: cond-mat/0011066 | DOI

[9] F. Sciortino, Nature Materials, 1:3 (2002), 145–146 | DOI

[10] V. N. Ryzhov, S. M. Stishov, Phys. Rev. E, 67:1 (2003), R010201, 4 pp. | DOI

[11] V. N. Ryzhov, S. M. Stishov, ZhETF, 122:4(10) (2002), 820–823 | DOI

[12] Yu. D. Fomin, V. N. Ryzhov, E. E. Tareyeva, Phys. Rev. E, 74:4 (2006), 041201, 7 pp., arXiv: cond-mat/0512640 | DOI

[13] Yu. D. Fomin, N. V. Gribova, V. N. Ryzhov, Defect and Diffusion Forum, 277 (2008), 155–160 | DOI

[14] Yu. D. Fomin, N. V. Gribova, V. N. Ryzhov, S. M. Stishov, D. Frenkel, J. Chem. Phys., 129:6 (2008), 064512, 6 pp., arXiv: 0711.4490 | DOI

[15] N. V. Gribova, Yu. D. Fomin, D. Frenkel, V. N. Ryzhov, Phys. Rev. E, 79:5 (2009), 051202, 6 pp., arXiv: 0812.4922 | DOI

[16] Yu. D. Fomin, V. N. Ryzhov, N. V. Gribova, Phys. Rev. E, 81:6 (2010), 061201, 12 pp., arXiv: 1001.0111 | DOI | MR

[17] V. I. Arnold, Teoriya katastrof, Editorial URSS, M., 2009 | MR | Zbl

[18] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, MTsNMO, M., 2009 | MR | Zbl

[19] W. Götze, M. Sperl, Phys. Rev. E, 66:1 (2002), 011405, 17 pp., arXiv: cond-mat/0205289 | DOI | MR