@article{TMF_2011_167_2_a6,
author = {S. A. Nazarov},
title = {Asymptotic expansions of eigenvalues in the~continuous spectrum of a~regularly perturbed quantum waveguide},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {239--263},
year = {2011},
volume = {167},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a6/}
}
TY - JOUR AU - S. A. Nazarov TI - Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 239 EP - 263 VL - 167 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a6/ LA - ru ID - TMF_2011_167_2_a6 ER -
S. A. Nazarov. Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 239-263. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a6/
[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Ucheb. posobie, Iz-vo LGU, L., 1980 | MR | Zbl
[2] V. P. Maslov, Dokl. AN SSSR, 123:4 (1958), 631–633 | MR | Zbl
[3] V. P. Maslov, E. M. Vorobev, Dokl. AN SSSR, 179:3 (1968), 558–561
[4] P. Exner, P. Šeba, J. Math. Phys., 30:11 (1989), 2574–2580 | DOI | MR | Zbl
[5] P. Duclos, P. Exner, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl
[6] W. Bulla, F. Gesztesy, W. Renger, B. Simon, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl
[7] P. Exner, S. A. Vugalter, Lett. Math. Phys., 39:1 (1997), 59–68 | DOI | MR | Zbl
[8] D. Borisov, P. Exner, R. Gadyl'shin, D. Krejčiřik, Ann. Henri Poincaré, 2:3 (2001), 553–572, arXiv: math-ph/0011052 | DOI | MR | Zbl
[9] V. V. Grushin, Matem. zametki, 75:3 (2004), 360–371 | DOI | MR | Zbl
[10] R. R. Gadylshin, TMF, 145:3 (2005), 358–371 | DOI | MR | Zbl
[11] S. A. Nazarov, Sib. matem. zhurn., 51:5 (2010), 1086–1101 | DOI | MR | Zbl
[12] D. V. Evans, M. Levitin, D. Vassiliev, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[13] A. Aslanyan, L. Parnovski, D. Vassiliev, Quart. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl
[14] I. V. Kamotskii, S. A. Nazarov, Matem. sb., 190:1 (1999), 109–138 | DOI | MR | Zbl
[15] I. V. Kamotskii, S. A. Nazarov, Matem. sb., 190:2 (1999), 43–70 | DOI | MR | Zbl
[16] S. A. Nazarov, B. A. Plamenevskii, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl
[17] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Matematicheskie voprosy teorii rasprostraneniya voln, v. 29, Zap. nauchn. sem. POMI, 264, ed. V. M. Babich, POMI, SPb., 2000, 66–82 | DOI | MR | Zbl
[18] S. A. Nazarov, UMN, 54:5(329) (1999), 77–142 | DOI | MR | Zbl
[19] S. A. Nazarov, Funkts. analiz i ego pril., 40:2 (2006), 20–32 | DOI | MR | Zbl
[20] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Izd-vo Mosk. un-ta, M., 1967, 209–292 | MR | Zbl
[21] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991 | MR | Zbl
[22] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl
[23] V. G. Mazya, B. A. Plamenevskii, Math. Nachr., 76:1 (1977), 29–60 | DOI | MR | Zbl
[24] V. G. Mazya, B. A. Plamenevskii, Math. Nachr., 81:1 (1978), 25–82 | DOI | MR | Zbl
[25] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev Spaces in Mathematics, v. II, Int. Math. Ser. (N.Y.), 9, ed. V. Maz'ya, Springer, New York, 2009, 261–309 | DOI | MR | Zbl
[26] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl
[27] V. I. Smirnov, Kurs vysshei matematiki, v. 2, Nauka, M., 1967 | MR
[28] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Differentsialnye uravneniya. Spektralnaya teoriya. Teoriya rasprostraneniya voln, Problemy matem. fiziki, 13, ed. M. Sh. Birman, Izd-vo LGU, L., 1991, 192–244 | MR | Zbl
[29] W. G. Mazja, S. A. Nazarov, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Lehrbucher Monogr., 82, Akademie, Berlin, 1991 | MR | Zbl
[30] V. Sibruk, Robert Vilyams Vud. Sovremennyi charodei fizicheskoi laboratorii, Gos. izd. tekhniko-teoreticheskoi lit-ry, M., L., 1946