Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 239-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish that by choosing a smooth local perturbation of the boundary of a planar quantum waveguide, we can create an eigenvalue near any given threshold of the continuous spectrum and the corresponding trapped wave exponentially decaying at infinity. Based on an analysis of an auxiliary object, a unitary augmented scattering matrix, we asymptotically interpret Wood's anomalies, the phenomenon of fast variations in the diffraction pattern due to variations in the near-threshold wave frequency.
Keywords: quantum waveguide, regular perturbation of the boundary, asymptotic expansion of eigenvalue on the continuous spectrum, Wood's anomalies.
@article{TMF_2011_167_2_a6,
     author = {S. A. Nazarov},
     title = {Asymptotic expansions of eigenvalues in the~continuous spectrum of a~regularly perturbed quantum waveguide},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {239--263},
     year = {2011},
     volume = {167},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a6/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 239
EP  - 263
VL  - 167
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a6/
LA  - ru
ID  - TMF_2011_167_2_a6
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 239-263
%V 167
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a6/
%G ru
%F TMF_2011_167_2_a6
S. A. Nazarov. Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 239-263. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a6/

[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Ucheb. posobie, Iz-vo LGU, L., 1980 | MR | Zbl

[2] V. P. Maslov, Dokl. AN SSSR, 123:4 (1958), 631–633 | MR | Zbl

[3] V. P. Maslov, E. M. Vorobev, Dokl. AN SSSR, 179:3 (1968), 558–561

[4] P. Exner, P. Šeba, J. Math. Phys., 30:11 (1989), 2574–2580 | DOI | MR | Zbl

[5] P. Duclos, P. Exner, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl

[6] W. Bulla, F. Gesztesy, W. Renger, B. Simon, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl

[7] P. Exner, S. A. Vugalter, Lett. Math. Phys., 39:1 (1997), 59–68 | DOI | MR | Zbl

[8] D. Borisov, P. Exner, R. Gadyl'shin, D. Krejčiřik, Ann. Henri Poincaré, 2:3 (2001), 553–572, arXiv: math-ph/0011052 | DOI | MR | Zbl

[9] V. V. Grushin, Matem. zametki, 75:3 (2004), 360–371 | DOI | MR | Zbl

[10] R. R. Gadylshin, TMF, 145:3 (2005), 358–371 | DOI | MR | Zbl

[11] S. A. Nazarov, Sib. matem. zhurn., 51:5 (2010), 1086–1101 | DOI | MR | Zbl

[12] D. V. Evans, M. Levitin, D. Vassiliev, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[13] A. Aslanyan, L. Parnovski, D. Vassiliev, Quart. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl

[14] I. V. Kamotskii, S. A. Nazarov, Matem. sb., 190:1 (1999), 109–138 | DOI | MR | Zbl

[15] I. V. Kamotskii, S. A. Nazarov, Matem. sb., 190:2 (1999), 43–70 | DOI | MR | Zbl

[16] S. A. Nazarov, B. A. Plamenevskii, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl

[17] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Matematicheskie voprosy teorii rasprostraneniya voln, v. 29, Zap. nauchn. sem. POMI, 264, ed. V. M. Babich, POMI, SPb., 2000, 66–82 | DOI | MR | Zbl

[18] S. A. Nazarov, UMN, 54:5(329) (1999), 77–142 | DOI | MR | Zbl

[19] S. A. Nazarov, Funkts. analiz i ego pril., 40:2 (2006), 20–32 | DOI | MR | Zbl

[20] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Izd-vo Mosk. un-ta, M., 1967, 209–292 | MR | Zbl

[21] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991 | MR | Zbl

[22] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl

[23] V. G. Mazya, B. A. Plamenevskii, Math. Nachr., 76:1 (1977), 29–60 | DOI | MR | Zbl

[24] V. G. Mazya, B. A. Plamenevskii, Math. Nachr., 81:1 (1978), 25–82 | DOI | MR | Zbl

[25] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev Spaces in Mathematics, v. II, Int. Math. Ser. (N.Y.), 9, ed. V. Maz'ya, Springer, New York, 2009, 261–309 | DOI | MR | Zbl

[26] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl

[27] V. I. Smirnov, Kurs vysshei matematiki, v. 2, Nauka, M., 1967 | MR

[28] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Differentsialnye uravneniya. Spektralnaya teoriya. Teoriya rasprostraneniya voln, Problemy matem. fiziki, 13, ed. M. Sh. Birman, Izd-vo LGU, L., 1991, 192–244 | MR | Zbl

[29] W. G. Mazja, S. A. Nazarov, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Lehrbucher Monogr., 82, Akademie, Berlin, 1991 | MR | Zbl

[30] V. Sibruk, Robert Vilyams Vud. Sovremennyi charodei fizicheskoi laboratorii, Gos. izd. tekhniko-teoreticheskoi lit-ry, M., L., 1946