A new extended matrix KP hierarchy and its solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 222-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Starting from the matrix KP hierarchy and adding a new $\tau_{B}$ flow, we obtain a new extended matrix KP hierarchy and its Lax representation with the symmetry constraint on squared eigenfunctions taken into account. The new hierarchy contains two sets of times $t_{A}$ and $\tau_{B}$ and also eigenfunctions and adjoint eigenfunctions as components. We propose a generalized dressing method for solving the extended matrix KP hierarchy and present some solutions. We study the soliton solutions of two types of $(2+1)$-dimensional AKNS equations with self-consistent sources and two types of Davey–Stewartson equations with self-consistent sources.
Keywords: extended matrix KP hierarchy, Lax representation, generalized dressing method, $2+1$ AKNS equation with self-consistent sources, Davey–Stewartson equation with self-consistent sources.
@article{TMF_2011_167_2_a5,
     author = {Yehui Huang and Xiaojun Liu and Yuqin Yao and Yunbo Zeng},
     title = {A~new extended matrix {KP} hierarchy and its solutions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {222--238},
     year = {2011},
     volume = {167},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a5/}
}
TY  - JOUR
AU  - Yehui Huang
AU  - Xiaojun Liu
AU  - Yuqin Yao
AU  - Yunbo Zeng
TI  - A new extended matrix KP hierarchy and its solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 222
EP  - 238
VL  - 167
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a5/
LA  - ru
ID  - TMF_2011_167_2_a5
ER  - 
%0 Journal Article
%A Yehui Huang
%A Xiaojun Liu
%A Yuqin Yao
%A Yunbo Zeng
%T A new extended matrix KP hierarchy and its solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 222-238
%V 167
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a5/
%G ru
%F TMF_2011_167_2_a5
Yehui Huang; Xiaojun Liu; Yuqin Yao; Yunbo Zeng. A new extended matrix KP hierarchy and its solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 222-238. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a5/

[1] M. Sato, “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems, RIMS Kokyuroku, 439, ed. H. Totoki, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl

[2] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, J. Phys. Soc. Japan, 50:11 (1981), 3806–3812 | DOI | MR | Zbl

[3] W. Oevel, Phys. A, 195:3–4 (1993), 533–576 | DOI | MR | Zbl

[4] A. Kundu, W. Strampp, J. Math. Phys., 36:8 (1995), 4192–4202, arXiv: hep-th/9311153 | DOI | MR | Zbl

[5] V. K. Mel'nikov, Lett. Math. Phys., 7:2 (1983), 129–136 | DOI | MR | Zbl

[6] V. K. Mel'nikov, Comm. Math. Phys., 112:4 (1987), 639–652 | DOI | MR | Zbl

[7] V. K. Mel'nikov, Comm. Math. Phys., 126:1 (1989), 201–215 | DOI | MR | Zbl

[8] Yi. Cheng, J. Math. Phys., 33:11 (1992), 3774–3782 | DOI | MR | Zbl

[9] T. Xiao, Y. B. Zeng, J. Phys. A, 37:28 (2004), 7143–7162, arXiv: nlin/0412070 | DOI | MR | Zbl

[10] A. L. Sakhnovich, J. Phys. A, 36:18 (2003), 5023–5033 | DOI | MR | Zbl

[11] C. Schiebold, Glasg. Math. J., 51:A (2009), 147–155 | DOI | MR | Zbl

[12] A. I. Zenchuk, P. M. Santini, J. Phys. A, 41:18 (2008), 185209, 28 pp., arXiv: 0801.3945 | DOI | MR | Zbl

[13] X. J. Liu, Y. B. Zeng, R. L. Lin, Phys. Lett. A, 372:21 (2008), 3819–3823, arXiv: 0710.4015 | DOI | MR | Zbl

[14] X. Liu, R. Lin, B. Jin, Y. Zeng, J. Math. Phys., 50:5 (2009), 053506, 14 pp., arXiv: 0905.1402 | DOI | MR | Zbl

[15] J. Hu, H.-Y. Wang, H.-W. Tam, J. Math. Phys., 49:1 (2008), 013506, 9 pp. | DOI | MR | Zbl

[16] S. Shen, L. Jiang, J. Comput. Appl. Math., 233:2 (2009), 585–589 | DOI | MR | Zbl

[17] L. Dickey, Soliton equations and Hamiltonian systems, Advanced Ser. Math. Phys., 26, 2nd ed., World Sci., Singapore, 2003 | DOI | MR | Zbl