An integrable equation with nonsmooth solitons
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 214-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the bi-Hamiltonian structure and Lax pair of the equation $\rho_t= bu_x+(1/2)[(u^2-u_x^2)\rho]_x$, where $\rho=u-u_{xx}$ and $b=\mathrm{const}$, which guarantees its integrability in the Lax pair sense. We study nonsmooth soliton solutions of this equation and show that under the vanishing boundary condition $u\to0$ at the space and time infinities, the equation has both “W/M-shape” peaked soliton (peakon) and cusped soliton (cuspon) solutions.
Keywords: integrable equation, peakon, cuspon.
Mots-clés : Lax pair
@article{TMF_2011_167_2_a4,
     author = {Zhijun Qiao and Xianqi Li},
     title = {An~integrable equation with nonsmooth solitons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {214--221},
     year = {2011},
     volume = {167},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a4/}
}
TY  - JOUR
AU  - Zhijun Qiao
AU  - Xianqi Li
TI  - An integrable equation with nonsmooth solitons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 214
EP  - 221
VL  - 167
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a4/
LA  - ru
ID  - TMF_2011_167_2_a4
ER  - 
%0 Journal Article
%A Zhijun Qiao
%A Xianqi Li
%T An integrable equation with nonsmooth solitons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 214-221
%V 167
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a4/
%G ru
%F TMF_2011_167_2_a4
Zhijun Qiao; Xianqi Li. An integrable equation with nonsmooth solitons. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 214-221. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a4/

[1] R. Camassa, D. D. Holm, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR | Zbl

[2] A. Constantin, W. A. Strauss, Comm. Pure Appl. Math., 53:5 (2000), 603–610 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[3] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory, eds. A. Degasperis, G. Gaeta, World Sci., River Edge, NJ, 1999, 23–37 | MR | Zbl

[4] H. R. Dullin, G. A. Gottwald, D. D. Holm, Phys. Rev. Lett., 87:19 (2001), 194501, 4 pp. | DOI

[5] R. S. Johnson, J. Fluid Mech., 455:1 (2002), 63–82 | DOI | MR | Zbl

[6] Z. Qiao, Acta Appl. Math., 83:3 (2004), 199–220 | DOI | MR | Zbl

[7] Z. Qiao, Comm. Math. Phys., 239:1–2 (2003), 309–341 | DOI | MR | Zbl

[8] Z. Qiao, S. Li, Math. Phys. Anal. Geom., 7:4 (2004), 289–308 | DOI | MR | Zbl

[9] Z. J. Qiao, G. P. Zhang, Europhys. Lett., 73:5 (2006), 657–663 | DOI | MR

[10] V. O. Vakhnenko, E. J. Parkes, Chaos Solitons Fractals, 20:5 (2004), 1059–1073 | DOI | MR | Zbl

[11] V. O. Vakhnenko, E. J. Parkes, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 8 (2006), 88–94 | MR

[12] G. Zhang, Z. Qiao, Math. Phys. Anal. Geom., 10:3 (2007), 205–225 | DOI | MR | Zbl

[13] G. Zhang, Z. Qiao, F. Liu, Pac. J. Appl. Math., 1:1 (2008), 105–121 | MR | Zbl

[14] A. S. Fokas, Phys. D, 87:1–4 (1995), 145–150 | DOI | MR | Zbl

[15] P. J. Olver, P. Rosenau, Phys. Rev. E, 53:2 (1996), 1900–1906 | DOI | MR

[16] Z. Qiao, J. Math. Phys., 47:11 (2006), 112701, 9 pp. | DOI | MR | Zbl

[17] Z. J. Qiao, Finite-dimensional Integrable System and Nonlinear Evolution Equations, Chinese National Higher Education Press, Beijing, 2002

[18] D. D. Holm, M. F. Staley, Phys. Lett. A, 308:5–6 (2003), 437–444, arXiv: nlin/0203007 | DOI | MR | Zbl

[19] Z. Qiao, Rev. Math. Phys., 13:5 (2001), 545–586 | DOI | MR | Zbl

[20] Z. Qiao, J. Math. Phys., 48:8 (2007), 082701, 20 pp. | DOI | MR | Zbl

[21] J. H. Chen, H.-R. Weng, P. M. Dougherty, Neuroscience, 126:3 (2004), 743–751 | DOI