Destruction of solutions of wave equations in systems with distributed parameters
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 206-213
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider two initial boundary value problems on an interval with homogeneous Dirichlet conditions. These problems were proposed by M. I. Rabinovich and D. I. Trubetskov and are given by nonlinear fourth-order Sobolev-type equations. We prove the local-in-time existence of a strong generalized solution of one problem, and for both problems, we obtain sufficient conditions for the destruction of their strong generalized solutions in a finite time.
Mots-clés :
destruction
Keywords: nonlinear analysis.
Keywords: nonlinear analysis.
@article{TMF_2011_167_2_a3,
author = {M. O. Korpusov},
title = {Destruction of solutions of wave equations in systems with distributed parameters},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {206--213},
publisher = {mathdoc},
volume = {167},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a3/}
}
TY - JOUR AU - M. O. Korpusov TI - Destruction of solutions of wave equations in systems with distributed parameters JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 206 EP - 213 VL - 167 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a3/ LA - ru ID - TMF_2011_167_2_a3 ER -
M. O. Korpusov. Destruction of solutions of wave equations in systems with distributed parameters. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 206-213. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a3/