Special Lagrangian fibrations on the flag variety $F^3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 193-205
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose a construction of a Lagrangian torus fibration of the full flag variety in $\mathbb C^3$. In contrast to the classical fibration obtained from the Gelfand–Zeitlin system, the proposed fibration is special Lagrangian.
Keywords:
flag variety, Lagrangian torus, pseudotoric structure, special Lagrangian fibration.
@article{TMF_2011_167_2_a2,
author = {N. A. Tyurin},
title = {Special {Lagrangian} fibrations on the~flag variety $F^3$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {193--205},
year = {2011},
volume = {167},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a2/}
}
N. A. Tyurin. Special Lagrangian fibrations on the flag variety $F^3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 193-205. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a2/
[1] M. Audin, Torus Actions on Symplectic Manifolds, Progr. Math., 93, Birkhäuser, Basel, 2004 | MR | Zbl
[2] S. A. Belev, N. A. Tyurin, Matem. zametki, 87:1 (2010), 48–59 | DOI | MR | Zbl
[3] N. A. Tyurin, TMF, 162:3 (2010), 307–333 | DOI | MR | Zbl
[4] V. Guillemin, S. Sternberg, J. Funct. Anal., 52:1 (1983), 106–128 | DOI | MR | Zbl
[5] D. Auroux, J. Gökova Geom. Topol., 1 (2007), 51–91, arXiv: 0706.3207 | MR | Zbl
[6] T. Nishinou, Y. Nohara, K. Ueda, Adv. Math., 224:2 (2010), 648–706, arXiv: 0810.3470 | DOI | MR | Zbl
[7] N. A. Tyurin, Twist tori and pseudotoric structures, arXiv: 1004.2574