Mots-clés : Klein–Gordon equation
@article{TMF_2011_167_2_a12,
author = {P. P. Fiziev and D. V. Shirkov},
title = {Solutions of {the~Klein{\textendash}Gordon} equation on manifolds with variable geometry including dimensional reduction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--336},
year = {2011},
volume = {167},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/}
}
TY - JOUR AU - P. P. Fiziev AU - D. V. Shirkov TI - Solutions of the Klein–Gordon equation on manifolds with variable geometry including dimensional reduction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 323 EP - 336 VL - 167 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/ LA - ru ID - TMF_2011_167_2_a12 ER -
%0 Journal Article %A P. P. Fiziev %A D. V. Shirkov %T Solutions of the Klein–Gordon equation on manifolds with variable geometry including dimensional reduction %J Teoretičeskaâ i matematičeskaâ fizika %D 2011 %P 323-336 %V 167 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/ %G ru %F TMF_2011_167_2_a12
P. P. Fiziev; D. V. Shirkov. Solutions of the Klein–Gordon equation on manifolds with variable geometry including dimensional reduction. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/
[1] D. V. Shirkov, Pisma v EChAYa, 7:6(162) (2010), 625–631, arXiv: 1004.1510 | DOI
[2] L. Anchordoqui, De Ch. Dai, M. Fairbairn, G. Landsberg, D. Stojkovic, Vanishing dimensions and planar events at the LHC, arXiv: 1003.5914
[3] W. Pauli, Rev. Modern Phys., 13:3 (1941), 203–232 | DOI | Zbl
[4] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR | MR | Zbl
[5] N. N. Bogolyubov, D. V. Shirkov, Kvantovye polya, Nauka, M., 1993 | MR | MR | Zbl
[6] V. de Alfaro, T. Redzhe, Potentsialnoe rasseyanie, Mir, M., 1966 | MR | Zbl
[7] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 1, Mir, M., 1965 | MR | Zbl
[8] G. Gerts, Printsipy mekhaniki, izlozhennye v novoi svyazi, Izd. AN SSSR, M., 1959 | MR | Zbl
[9] W. Arendt, R. Nittka, W. Peter, F. Steiner, “Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics”, Mathematical Analysis of Evolution, Information, and Complexity, eds. W. Arendt, W. P. Schleich, Wiley-VCH, Weinheim, 2009, 1–71 | DOI | Zbl
[10] P. P. Fiziev, D. V. Shirkov, “Amusing properties of Klein–Gordon solutions on manifolds with variable geometry”, The International Workshop “Bogoliubov Readings” (September 22–25, 2010, JINR, Dubna) {http://tcpa.uni-sofia.bg/index.php?n=7}
[11] P. P. Fiziev, Riemannian $\mathbf{(1+d)}$-Dim Space-Time Manifolds with Nonstandard Topology which Admit Dimensional Reduction to Any Lower Dimension and Transformation of the Klein-Gordon Equation to the $\mathbf{1}$-Dim Schrodinger Like Equation, arXiv: 1012.3520
[12] M. Abramovits, I. Stegan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | Zbl
[13] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1971 | MR | Zbl