Solutions of the~Klein--Gordon equation on manifolds with variable geometry including dimensional reduction
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 323-336
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop the recent proposal to use dimensional reduction from the four-dimensional space–time $(D=1+3)$ to the variant with a smaller number of space dimensions $D=1+d$, $d3$, at sufficiently small distances to construct a renormalizable quantum field theory. We study the Klein–Gordon equation with a few toy examples (“educational toys”) of a space–time with a variable spatial geometry including a transition to a dimensional reduction. The examples considered contain a combination of two regions with a simple geometry (two-dimensional cylindrical surfaces with different radii) connected by a transition region. The new technique for transforming the study of solutions of the Klein–Gordon problem on a space with variable geometry into solution of a one-dimensional stationary Schrödinger-type equation with potential generated by this variation is useful. We draw the following conclusions: $(1)$ The signal related to the degree of freedom specific to the higher-dimensional part does not penetrate into the smaller-dimensional part because of an inertial force inevitably arising in the transition region (this is the centrifugal force in our models). $(2)$ The specific spectrum of scalar excitations resembles the spectrum of real particles; it reflects the geometry of the transition region and represents its “fingerprints”. $(3)$ The parity violation due to the asymmetric character of the construction of our models could be related to the CP symmetry violation.
Keywords:
dimensional reduction, space with variable geometry, spectrum of scalar excitations, CP symmetry violation.
Mots-clés : Klein–Gordon equation
Mots-clés : Klein–Gordon equation
@article{TMF_2011_167_2_a12,
author = {P. P. Fiziev and D. V. Shirkov},
title = {Solutions of {the~Klein--Gordon} equation on manifolds with variable geometry including dimensional reduction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--336},
publisher = {mathdoc},
volume = {167},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/}
}
TY - JOUR AU - P. P. Fiziev AU - D. V. Shirkov TI - Solutions of the~Klein--Gordon equation on manifolds with variable geometry including dimensional reduction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 323 EP - 336 VL - 167 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/ LA - ru ID - TMF_2011_167_2_a12 ER -
%0 Journal Article %A P. P. Fiziev %A D. V. Shirkov %T Solutions of the~Klein--Gordon equation on manifolds with variable geometry including dimensional reduction %J Teoretičeskaâ i matematičeskaâ fizika %D 2011 %P 323-336 %V 167 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/ %G ru %F TMF_2011_167_2_a12
P. P. Fiziev; D. V. Shirkov. Solutions of the~Klein--Gordon equation on manifolds with variable geometry including dimensional reduction. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/