Solutions of the Klein–Gordon equation on manifolds with variable geometry including dimensional reduction
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 323-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop the recent proposal to use dimensional reduction from the four-dimensional space–time $(D=1+3)$ to the variant with a smaller number of space dimensions $D=1+d$, $d<3$, at sufficiently small distances to construct a renormalizable quantum field theory. We study the Klein–Gordon equation with a few toy examples (“educational toys”) of a space–time with a variable spatial geometry including a transition to a dimensional reduction. The examples considered contain a combination of two regions with a simple geometry (two-dimensional cylindrical surfaces with different radii) connected by a transition region. The new technique for transforming the study of solutions of the Klein–Gordon problem on a space with variable geometry into solution of a one-dimensional stationary Schrödinger-type equation with potential generated by this variation is useful. We draw the following conclusions: $(1)$ The signal related to the degree of freedom specific to the higher-dimensional part does not penetrate into the smaller-dimensional part because of an inertial force inevitably arising in the transition region (this is the centrifugal force in our models). $(2)$ The specific spectrum of scalar excitations resembles the spectrum of real particles; it reflects the geometry of the transition region and represents its “fingerprints”. $(3)$ The parity violation due to the asymmetric character of the construction of our models could be related to the CP symmetry violation.
Keywords: dimensional reduction, space with variable geometry, spectrum of scalar excitations, CP symmetry violation.
Mots-clés : Klein–Gordon equation
@article{TMF_2011_167_2_a12,
     author = {P. P. Fiziev and D. V. Shirkov},
     title = {Solutions of {the~Klein{\textendash}Gordon} equation on manifolds with variable geometry including dimensional reduction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--336},
     year = {2011},
     volume = {167},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/}
}
TY  - JOUR
AU  - P. P. Fiziev
AU  - D. V. Shirkov
TI  - Solutions of the Klein–Gordon equation on manifolds with variable geometry including dimensional reduction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 323
EP  - 336
VL  - 167
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/
LA  - ru
ID  - TMF_2011_167_2_a12
ER  - 
%0 Journal Article
%A P. P. Fiziev
%A D. V. Shirkov
%T Solutions of the Klein–Gordon equation on manifolds with variable geometry including dimensional reduction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 323-336
%V 167
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/
%G ru
%F TMF_2011_167_2_a12
P. P. Fiziev; D. V. Shirkov. Solutions of the Klein–Gordon equation on manifolds with variable geometry including dimensional reduction. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a12/

[1] D. V. Shirkov, Pisma v EChAYa, 7:6(162) (2010), 625–631, arXiv: 1004.1510 | DOI

[2] L. Anchordoqui, De Ch. Dai, M. Fairbairn, G. Landsberg, D. Stojkovic, Vanishing dimensions and planar events at the LHC, arXiv: 1003.5914

[3] W. Pauli, Rev. Modern Phys., 13:3 (1941), 203–232 | DOI | Zbl

[4] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR | MR | Zbl

[5] N. N. Bogolyubov, D. V. Shirkov, Kvantovye polya, Nauka, M., 1993 | MR | MR | Zbl

[6] V. de Alfaro, T. Redzhe, Potentsialnoe rasseyanie, Mir, M., 1966 | MR | Zbl

[7] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 1, Mir, M., 1965 | MR | Zbl

[8] G. Gerts, Printsipy mekhaniki, izlozhennye v novoi svyazi, Izd. AN SSSR, M., 1959 | MR | Zbl

[9] W. Arendt, R. Nittka, W. Peter, F. Steiner, “Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics”, Mathematical Analysis of Evolution, Information, and Complexity, eds. W. Arendt, W. P. Schleich, Wiley-VCH, Weinheim, 2009, 1–71 | DOI | Zbl

[10] P. P. Fiziev, D. V. Shirkov, “Amusing properties of Klein–Gordon solutions on manifolds with variable geometry”, The International Workshop “Bogoliubov Readings” (September 22–25, 2010, JINR, Dubna) {http://tcpa.uni-sofia.bg/index.php?n=7}

[11] P. P. Fiziev, Riemannian $\mathbf{(1+d)}$-Dim Space-Time Manifolds with Nonstandard Topology which Admit Dimensional Reduction to Any Lower Dimension and Transformation of the Klein-Gordon Equation to the $\mathbf{1}$-Dim Schrodinger Like Equation, arXiv: 1012.3520

[12] M. Abramovits, I. Stegan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | Zbl

[13] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1971 | MR | Zbl