Nonuniqueness of a Gibbs measure for a model on the Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 311-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a model on the Cayley tree and prove that a uncountable set of $\widehat G$-periodic Gibbs measures exists for this model, in contrast to models studied previously.
Keywords: Cayley tree, hard-core model, Gibbs measure.
Mots-clés : configuration
@article{TMF_2011_167_2_a11,
     author = {U. A. Rozikov and G. T. Madgoziev},
     title = {Nonuniqueness of {a~Gibbs} measure for a~model on {the~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--322},
     year = {2011},
     volume = {167},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a11/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - G. T. Madgoziev
TI  - Nonuniqueness of a Gibbs measure for a model on the Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 311
EP  - 322
VL  - 167
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a11/
LA  - ru
ID  - TMF_2011_167_2_a11
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A G. T. Madgoziev
%T Nonuniqueness of a Gibbs measure for a model on the Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 311-322
%V 167
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a11/
%G ru
%F TMF_2011_167_2_a11
U. A. Rozikov; G. T. Madgoziev. Nonuniqueness of a Gibbs measure for a model on the Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 311-322. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a11/

[1] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[2] U. A. Rozikov, J. Stat. Phys., 130:4 (2008), 801–813, arXiv: math-ph/0611038 | DOI | MR | Zbl

[3] H. -O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Stud. Math., 9, Walter de Gruyter, Berlin, 1988 | MR | Zbl

[4] P. M. Blekher, N. N. Ganikhodzhaev, TVP, 35:2 (1990), 220–230 | DOI | MR | Zbl

[5] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, J. Stat. Phys., 79:1–2 (1995), 473–482 | DOI | MR | Zbl

[6] U. A. Rozikov, TMF, 118:1 (1999), 95–104 | DOI | MR | Zbl

[7] M. M. Rakhmatullaev, U. A. Rozikov, TMF, 156:2 (2008), 292–302 | DOI | MR | Zbl

[8] N. N. Ganikhodjaev, U. A. Rozikov, Math. Phys. Anal. Geom., 12:2 (2009), 141–156 | DOI | MR | Zbl

[9] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, J. Nonlin. Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[10] U. A. Rozikov, J. Stat. Phys., 122:2 (2006), 217–235 | DOI | MR | Zbl

[11] V. V. Prasolov, Mnogochleny, MTsNMO, M., 2003 | MR | Zbl

[12] U. A. Rozikov, Yu. M. Suhov, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:3 (2006), 471–488 | DOI | MR | Zbl