Phase transitions in real gases and ideal Bose gases
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 295-310 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on number theory, we present a new concept of gas without the particle interaction taken into account in which there are first-order phase transitions for $T on isotherms. We present formulas for new ideal gases, solving the Gibbs paradox, and also formulas for the transition to real gases based on the concept of the Zeno line.
Keywords: first-order phase transition, phase transition of the second kind, Einstein paradox, gas mixture, cluster, ideal gas, Bose gas.
@article{TMF_2011_167_2_a10,
     author = {V. P. Maslov},
     title = {Phase transitions in real gases and ideal {Bose} gases},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {295--310},
     year = {2011},
     volume = {167},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a10/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Phase transitions in real gases and ideal Bose gases
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 295
EP  - 310
VL  - 167
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a10/
LA  - ru
ID  - TMF_2011_167_2_a10
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Phase transitions in real gases and ideal Bose gases
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 295-310
%V 167
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a10/
%G ru
%F TMF_2011_167_2_a10
V. P. Maslov. Phase transitions in real gases and ideal Bose gases. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 295-310. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a10/

[1] V. P. Maslov, TMF, 165:3 (2010), 543–567 | DOI | Zbl

[2] M. Plank, Termodinamika, GIZ, L.–M., 1925 | MR | Zbl

[3] O. Wiedeburg, Ann. Phys., 289:12 (1894), 684–697 | DOI | Zbl

[4] A. Byk, Ztschr. Phys. Chem., 43/45 (1903), 465–495

[5] G. A. Lorents, Lektsii po termodinamike, Gostekhizdat, M., 1946 | Zbl

[6] V. P. Maslov, Russ. J. Math. Phys., 18:1 (2011) (to appear) | MR

[7] V. P. Maslov, Math. Notes, 86:3–4 (2009), 522–529 | DOI | Zbl

[8] V. P. Maslov, Math. Notes, 86:5–6 (2009), 605–611 | DOI | Zbl

[9] V. P. Maslov, Math. Notes, 87:3–4 (2010), 384–391 | DOI | Zbl

[10] V. P. Maslov, Russ. J. Math. Phys., 17:2 (2010), 240–250 | DOI | MR | Zbl

[11] V. P. Maslov, Math. Notes, 87:5–6 (2010), 728–737 | DOI | Zbl

[12] V. P. Maslov, J. Fixed Point Theory Appl., 8:1 (2010), 81–111 | DOI | MR | Zbl

[13] V. P. Maslov, Math. Notes, 88:1–2 (2010), 57–66 | DOI | Zbl

[14] V. P. Maslov, Russ. J. Math. Phys., 17:3 (2010), 288–306 | DOI | Zbl

[15] V. P. Maslov, Zeno-line, binodal, T-$\rho$ diagram and clusters as a new Bose-condensate bases on new global distributions in number theory, arXiv: 1007.4182

[16] V. P. Maslov, Math. Notes, 88:3–4 (2010), 516–523 | DOI | Zbl

[17] V. P. Maslov, Math. Notes, 88:5–6 (2010), 723–731 | DOI | Zbl

[18] V. P. Maslov, Matem. zametki, 89:2 (2011), 272–284 | DOI | Zbl

[19] Ya. Van-der-Vaals, F. Konstamm, Kurs termostatiki, v. 1, ONTI, M., 1936 | Zbl

[20] I. A. Molotkov, Russ. J. Math. Phys., 17:4 (2010), 476–485 | DOI | Zbl

[21] V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, V. A. Tsymarnyi, Termodinamicheskie svoistva vozdukha, Izd-vo standartov, M., 1978

[22] V. P. Maslov, V. E. Nazaikinskii, Matem. zametki, 83:2 (2008), 232–263 | DOI | MR | Zbl

[23] V. P. Maslov, TMF, 160:2 (2009), 331–332 | DOI | MR | Zbl

[24] V. P. Maslov, Matem. zametki, 83:5 (2008), 787–791 | DOI | MR | Zbl

[25] V. P. Maslov, P. P. Mosolov, “Nonlinear Wave Equations Perturbed by Viscous Terms”, De Gruyter Expositions in Mathematics, 31, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[26] K. I. Shmulovich, L. Merkyuri, Vestnik Otdeleniya nauk o Zemle RAN, 1 (2006), 24

[27] Ya. M. Gelfer, V. L. Lyuboshits, M. I. Podgoretskii, Paradoks Gibbsa i tozhdestvennost chastits v kvantovoi mekhanike, Nauka, M., 1975

[28] A. Einshtein, Sobranie nauchnykh trudov, v. 4, Kvantovaya teoriya odnoatomnogo idealnogo gaza, Nauka, M., 1966 | MR | Zbl

[29] M. Dykman, L. Pryadko, Lectures of Theory of Dissipative Tunneling {http://www.pa.msu.edu/\raisebox{-3pt}{ ̃ }dykman/PHY972/instanton_lectures.pdf}

[30] V. P. Maslov, “Globalnaya eksponentsialnaya asimptotika reshenii tunnelnykh uravnenii i zadachi o bolshikh ukloneniyakh”, Mezhdunarodnaya konferentsiya po analiticheskim metodam v teorii chisel i analize (Moskva, 14–19 sentyabrya 1981 g.), Tr. MIAN SSSR, 163, 1984, 150–180 | MR | Zbl

[31] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965 | MR | Zbl

[32] V. P. Maslov, Russ. J. Math. Phys., 17:4 (2010), 454–467 | DOI | MR | Zbl

[33] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR

[34] N. Khart, Geometricheskoe kvantovanie v deistvii, Mir, M., 1985 | MR

[35] V. P. Maslov, Quantization of Thermodynamics and Ultrasecond Quantization, IKI Publishing House, M., 2001 | MR

[36] V. P. Maslov, Russ. J. Math. Phys., 14:3 (2007), 304–318 | DOI | MR | Zbl

[37] V. P. Maslov, Russ. J. Math. Phys., 14:4 (2007), 453–464 | DOI | MR | Zbl

[38] V. P. Maslov, Russ. J. Math. Phys., 15:1 (2008), 98–101 | DOI | MR | Zbl