Keywords: Foldy–Wouthuysen transformation, adiabatic approximation, pseudodifferential operator.
@article{TMF_2011_167_2_a1,
author = {J. Br\"uning and V. V. Grushin and S. Yu. Dobrokhotov and T. Ya. Tudorovskii},
title = {Generalized {Foldy{\textendash}Wouthuysen} transformation and pseudodifferential operators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {171--192},
year = {2011},
volume = {167},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a1/}
}
TY - JOUR AU - J. Brüning AU - V. V. Grushin AU - S. Yu. Dobrokhotov AU - T. Ya. Tudorovskii TI - Generalized Foldy–Wouthuysen transformation and pseudodifferential operators JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 171 EP - 192 VL - 167 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a1/ LA - ru ID - TMF_2011_167_2_a1 ER -
%0 Journal Article %A J. Brüning %A V. V. Grushin %A S. Yu. Dobrokhotov %A T. Ya. Tudorovskii %T Generalized Foldy–Wouthuysen transformation and pseudodifferential operators %J Teoretičeskaâ i matematičeskaâ fizika %D 2011 %P 171-192 %V 167 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a1/ %G ru %F TMF_2011_167_2_a1
J. Brüning; V. V. Grushin; S. Yu. Dobrokhotov; T. Ya. Tudorovskii. Generalized Foldy–Wouthuysen transformation and pseudodifferential operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 171-192. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a1/
[1] L. L. Foldy, S. A. Wouthuysen, Phys. Rev., 78:1 (1950), 29–36 | DOI | Zbl
[2] A. J. Silenko, J. Math. Phys., 44:7 (2003), 2952–2966, arXiv: ; В. П. Незнамов, Докл. РАН, 362:1 (1998), 44–46 ; ЭЧАЯ, 37:1 (2006), 151–182, arXiv: ; V. P. Neznamov, The necessary and sufficient conditions for transformation from Dirac representation to Foldy–Wouthuysen representation, arXiv: ; K. Yu. Bliokh, Europhys. Lett., 72:1 (2005), 7–13, arXiv: math-ph/0404067hep-th/04110500804.0333quant-ph/0501183 | DOI | MR | Zbl | DOI | DOI
[3] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Ch. 1, Relyativistskaya kvantovaya teoriya, Nauka, M., 1968 ; Дж. Д. Бьеркен, С. Д. Дрелл, Релятивистская квантовая теория, т. 1, Релятивистская квантовая механика, Наука, М., 1978 ; А. Мессиа, Квантовая механика, гл. XX. Уравнение Дирака, т. 2, Наука, М., 1979 ; В. Г. Левич, Ю. А. Вдовин, В. А. Мямлин, Курс теоретической физики, гл. XIII. Релятивистская квантовая механика, т. II, Квантовая механика. Квантовая статистика и физическая кинетика, Наука, М., 1971 | MR | Zbl | MR | Zbl | MR | MR
[4] V. P. Maslov, Operatornye metody, Nauka, M., 1973 ; М. В. Карасев, В. П. Маслов, Нелинейные скобки Пуассона. Геометрия и квантование, Наука, М., 1991 | MR | Zbl | MR | Zbl
[5] S. Yu. Dobrokhotov, Dokl. AN SSSR, 269:1 (1983), 76–80 ; Л. В. Берлянд, С. Ю. Доброхотов, Докл. АН СССР, 296:1 (1987), 80–84 | MR | Zbl | MR | Zbl
[6] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, TMF, 141:2 (2004), 267–303 ; V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, J. Engrg. Math., 55:1–4 (2006), 183–237, arXiv: math-ph/0503041 | DOI | MR | Zbl | DOI | MR | Zbl
[7] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 9, Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR | Zbl
[8] I. M. Gelfand, Lektsii po lineinoi algebre, Nauka, M., 1971 | MR | Zbl
[9] M. V. Karasev, V. P. Maslov, “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II. Operatornye unitarno-nelineinye uravneniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 13, eds. R. V. Gamkrelidze, VINITI, M., 1979, 145–267 | MR | Zbl
[10] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 | MR | Zbl
[11] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[12] G. Panati, H. Spohn, S. Teufel, Comm. Math. Phys., 242:3 (2003), 547–578, arXiv: math-ph/0212041 | DOI | MR | Zbl
[13] V. V. Grushin, S. Yu. Dobrokhotov, Matem. zametki, 87:4 (2010), 554–571 | DOI | MR | Zbl