Generalized Foldy–Wouthuysen transformation and pseudodifferential operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 171-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the Foldy–Wouthuysen transformation and its generalizations are simplified if the methods of pseudodifferential operators are used, which also allow estimating the exactness of the transition from the Dirac equation to the reduced equations for electrons and positrons. The methods and techniques used can be useful not only in studying asymptotic solutions of the Dirac equation but also in other problems.
Mots-clés : Dirac equation
Keywords: Foldy–Wouthuysen transformation, adiabatic approximation, pseudodifferential operator.
@article{TMF_2011_167_2_a1,
     author = {J. Br\"uning and V. V. Grushin and S. Yu. Dobrokhotov and T. Ya. Tudorovskii},
     title = {Generalized {Foldy{\textendash}Wouthuysen} transformation and pseudodifferential operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--192},
     year = {2011},
     volume = {167},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a1/}
}
TY  - JOUR
AU  - J. Brüning
AU  - V. V. Grushin
AU  - S. Yu. Dobrokhotov
AU  - T. Ya. Tudorovskii
TI  - Generalized Foldy–Wouthuysen transformation and pseudodifferential operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 171
EP  - 192
VL  - 167
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a1/
LA  - ru
ID  - TMF_2011_167_2_a1
ER  - 
%0 Journal Article
%A J. Brüning
%A V. V. Grushin
%A S. Yu. Dobrokhotov
%A T. Ya. Tudorovskii
%T Generalized Foldy–Wouthuysen transformation and pseudodifferential operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 171-192
%V 167
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a1/
%G ru
%F TMF_2011_167_2_a1
J. Brüning; V. V. Grushin; S. Yu. Dobrokhotov; T. Ya. Tudorovskii. Generalized Foldy–Wouthuysen transformation and pseudodifferential operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 2, pp. 171-192. http://geodesic.mathdoc.fr/item/TMF_2011_167_2_a1/

[1] L. L. Foldy, S. A. Wouthuysen, Phys. Rev., 78:1 (1950), 29–36 | DOI | Zbl

[2] A. J. Silenko, J. Math. Phys., 44:7 (2003), 2952–2966, arXiv: ; В. П. Незнамов, Докл. РАН, 362:1 (1998), 44–46 ; ЭЧАЯ, 37:1 (2006), 151–182, arXiv: ; V. P. Neznamov, The necessary and sufficient conditions for transformation from Dirac representation to Foldy–Wouthuysen representation, arXiv: ; K. Yu. Bliokh, Europhys. Lett., 72:1 (2005), 7–13, arXiv: math-ph/0404067hep-th/04110500804.0333quant-ph/0501183 | DOI | MR | Zbl | DOI | DOI

[3] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Ch. 1, Relyativistskaya kvantovaya teoriya, Nauka, M., 1968 ; Дж. Д. Бьеркен, С. Д. Дрелл, Релятивистская квантовая теория, т. 1, Релятивистская квантовая механика, Наука, М., 1978 ; А. Мессиа, Квантовая механика, гл. XX. Уравнение Дирака, т. 2, Наука, М., 1979 ; В. Г. Левич, Ю. А. Вдовин, В. А. Мямлин, Курс теоретической физики, гл. XIII. Релятивистская квантовая механика, т. II, Квантовая механика. Квантовая статистика и физическая кинетика, Наука, М., 1971 | MR | Zbl | MR | Zbl | MR | MR

[4] V. P. Maslov, Operatornye metody, Nauka, M., 1973 ; М. В. Карасев, В. П. Маслов, Нелинейные скобки Пуассона. Геометрия и квантование, Наука, М., 1991 | MR | Zbl | MR | Zbl

[5] S. Yu. Dobrokhotov, Dokl. AN SSSR, 269:1 (1983), 76–80 ; Л. В. Берлянд, С. Ю. Доброхотов, Докл. АН СССР, 296:1 (1987), 80–84 | MR | Zbl | MR | Zbl

[6] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, TMF, 141:2 (2004), 267–303 ; V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, J. Engrg. Math., 55:1–4 (2006), 183–237, arXiv: math-ph/0503041 | DOI | MR | Zbl | DOI | MR | Zbl

[7] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 9, Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR | Zbl

[8] I. M. Gelfand, Lektsii po lineinoi algebre, Nauka, M., 1971 | MR | Zbl

[9] M. V. Karasev, V. P. Maslov, “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II. Operatornye unitarno-nelineinye uravneniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 13, eds. R. V. Gamkrelidze, VINITI, M., 1979, 145–267 | MR | Zbl

[10] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 | MR | Zbl

[11] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[12] G. Panati, H. Spohn, S. Teufel, Comm. Math. Phys., 242:3 (2003), 547–578, arXiv: math-ph/0212041 | DOI | MR | Zbl

[13] V. V. Grushin, S. Yu. Dobrokhotov, Matem. zametki, 87:4 (2010), 554–571 | DOI | MR | Zbl