The Fibonacci–Penrose semigroup formalism and morphogenetic synthesis of quasicrystal mosaics
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 1, pp. 136-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the group bundle for the inverse Fibonacci semigroups in the axiomatic approach framework. The proper Fibonacci semigroup is the corresponding group bundle for the Penrose semigroups, which can be interpreted as the generating grammar of the morphogenetic synthesis of the pentasymmetric Penrose parquet in the numbers of tiling by golden rhombuses. This morphogenetic synthesis of the Penrose parquet satisfies the scaling principle. Parquet plates are not absolutely rigid, and the relations between their metric characteristics are governed by the golden section and other magic numbers. The characteristic form factors of three-level dual alphabets are the corresponding invariants. We realize the morphogenetic synthesis in the examples of square-octagonal and bihexagonal lattices. We consider cumulative properties of magic series and the evolutionary aspects of semigroup orbits in the entropy representation.
Keywords: group bundle of inverse semigroups, Fibonacci generator, Penrose generator, morphogenesis, square-octagonal lattice
Mots-clés : bihexagonal lattice.
@article{TMF_2011_167_1_a7,
     author = {V. V. Yudin and E. S. Startsev and I. G. Permyakova},
     title = {The~Fibonacci{\textendash}Penrose semigroup formalism and morphogenetic synthesis of quasicrystal mosaics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {136--160},
     year = {2011},
     volume = {167},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a7/}
}
TY  - JOUR
AU  - V. V. Yudin
AU  - E. S. Startsev
AU  - I. G. Permyakova
TI  - The Fibonacci–Penrose semigroup formalism and morphogenetic synthesis of quasicrystal mosaics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 136
EP  - 160
VL  - 167
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a7/
LA  - ru
ID  - TMF_2011_167_1_a7
ER  - 
%0 Journal Article
%A V. V. Yudin
%A E. S. Startsev
%A I. G. Permyakova
%T The Fibonacci–Penrose semigroup formalism and morphogenetic synthesis of quasicrystal mosaics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 136-160
%V 167
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a7/
%G ru
%F TMF_2011_167_1_a7
V. V. Yudin; E. S. Startsev; I. G. Permyakova. The Fibonacci–Penrose semigroup formalism and morphogenetic synthesis of quasicrystal mosaics. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 1, pp. 136-160. http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a7/

[1] D. Gratia, UFN, 156:10 (1988), 347–364 | DOI

[2] A. M. Bratkovskii, Yu. A. Danilov, G. I. Kuznetsov, FMM, 68:6 (1989), 1045–1095

[3] P. V. Stivenz, A. I. Gouldman, V mire nauki, 1991, no. 6, 14–21

[4] D. R. Nelson, V mire nauki, 1986, no. 10, 19–28

[5] M. Gardner, Ot mozaik Penrouza k nadezhnym shifram, Mir, M., 1993 | MR | Zbl

[6] R. Penrouz, Novyi um korolya, Editorial URSS, M., 2003

[7] G. Y. Onoda, P. J. Steinhardt, D. P. DiVincenzo, J. E. S. Socolar, Phys. Rev. Lett., 60:25 (1988), 2653–2656 | DOI

[8] H.-C. Jeong, Phys. Rev. Lett., 98:13 (2007), 135501, 4 pp., arXiv: 0704.0848 | DOI | MR

[9] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, Informodinamika setevykh struktur. Veroyatnost. Drevesnye grafy. Fraktaly, DVGU, Vladivostok, 2003

[10] D. A. Polyanskii, Teoretiko-informatsionnyi analiz minimalnogo klassa kvazikristallicheskikh struktur, Avtoref. dis. $\dots$ kand. fiz.-mat. nauk, DVGU, Vladivostok, 2005

[11] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, E. A. Savchuk, Kristallografiya, 44:3 (1999), 413

[12] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, O. A. Chudnova, Yu. A. Karygina, Kristallografiya, 47:2 (2002), 224–232 | DOI

[13] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, O. A. Chudnova, Izv. RAN. Ser. fiz., 65:10 (2001), 1405–1410

[14] Yu. A. Karygina, Fraktalnaya kristallografiya kvazikristallicheskikh struktur v drevesno-grafovom predstavlenii na gruppakh podobiya, Avtoref. dis. $\dots$ kand. fiz.-mat. nauk, DVGU, Vladivostok, 2002

[15] V. V. Yudin, Yu. A. Karygina, Kristallografiya, 46:6 (2001), 1004–1008 | DOI

[16] Yu. A. Karygina, V. V. Yudin, Materialovedenie, 2001, no. 12, 12–16

[17] V. V. Yudin, E. A. Lyubchenko, T. A. Pisarenko, “Fraktalnost kvazikristallicheskoi mozaiki Penrouza v predstavlenii drevesnykh grafov Keili”, Sb. nauch. trudov “Prikladnaya sinergetika, fraktaly i kompyuternoe modelirovanie struktur”, ed. A. A. Oksogoev, TGU, Tomsk, 2002, 343

[18] V. Ebeling, A. Engel, R. Faistel, Fizika protsessov evolyutsii, Editorial URSS, M., 2001 | MR | Zbl

[19] H. W. Gould, Fibonacci Quart., 19:3 (1981), 250–257 | MR | Zbl

[20] V. V. Yudin, E. S. Startsev, I. G. Permyakova, “Fraktal Fibonachchi kak novyi tip fraktalnosti”, materialy XII Vserossiiskogo seminara “Modelirovanie neravnovesnykh sistem”, IVM SO RAN, Krasnoyarsk, 2009, 207

[21] A. D. Morozov, Vvedenie v teoriyu fraktalov, NNGU, N. Novgorod, 1999

[22] R. M. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh, Postmarket, M., 2000

[23] A. Klifford, G. Preston, Algebraicheskaya teoriya polugrupp, v. 2, Mir, M., 1972 | MR | MR | Zbl

[24] E. S. Lyapin, Polugruppy, GIFML, M., 1960 | MR | Zbl

[25] V. V. Yudin, Ob odnoi nelorentsovoi forme printsipa relyativistskoi ivariantnosti, Avtoref. dis. $\dots$ kand. fiz.-mat. nauk, Un-t druzhby narodov, M., 1970

[26] V. V. Yudin, A. D. Ershov, Izv. vuzov. Fizika, 1970, no. 6, 49–53 | DOI

[27] N. Martin, Dzh. Inglend, Matematicheskaya teoriya entropii, Mir, M., 1988 | MR | MR | Zbl

[28] I. P. Korenfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | MR | Zbl

[29] A. N. Mikhalyuk, P. L. Titov, V. V. Yudin, Phys. A, 389:19 (2010), 4127–4139 | DOI

[30] V. V. Yudin, P. L. Titov, A. N. Mikhalyuk, TMF, 164:1 (2010), 88–107 | DOI | Zbl

[31] V. V. Yudin, P. L. Titov, A. N. Mikhalyuk, Izv. RAN. Ser. fiz., 73:9 (2009), 1340–1347 | DOI | Zbl