Two stages of motion of anharmonic oscillators modeling fast particles in crystals
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 1, pp. 123-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the evolution of the spatial distribution of fast atomic particles as they pass through a crystal. At small penetration depths where the particles move without significant loss of coherence, the joint probability density function becomes smoother at the expense of the gradient of the anharmonic potential of the planar channel. We show that as a result of this smoothing, there arises a quasiequilibrium (quasistationary) state of the subsystem of fast particles. The further evolution of the particle distribution is caused by nonelastic scattering and is described by the kinetic equation. At this stage, the anharmonic character of particle oscillations between the channel walls results in a renormalization of the total phonon scattering cross section of particles, and the renormalization is determined by the fourth-order anharmonic interaction.
Keywords: fast atomic particle, anharmonic oscillator, crystal, channel, channeled particle, kinetic equation, inelastic scattering, fourth-order anharmonism.
Mots-clés : phonon, Liouville equation
@article{TMF_2011_167_1_a6,
     author = {Yu. A. Kashlev},
     title = {Two stages of motion of anharmonic oscillators modeling fast particles in crystals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {123--135},
     year = {2011},
     volume = {167},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a6/}
}
TY  - JOUR
AU  - Yu. A. Kashlev
TI  - Two stages of motion of anharmonic oscillators modeling fast particles in crystals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 123
EP  - 135
VL  - 167
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a6/
LA  - ru
ID  - TMF_2011_167_1_a6
ER  - 
%0 Journal Article
%A Yu. A. Kashlev
%T Two stages of motion of anharmonic oscillators modeling fast particles in crystals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 123-135
%V 167
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a6/
%G ru
%F TMF_2011_167_1_a6
Yu. A. Kashlev. Two stages of motion of anharmonic oscillators modeling fast particles in crystals. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 1, pp. 123-135. http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a6/

[1] I. Lindkhard, UFN, 99:2 (1969), 249–296 | DOI

[2] E.-Kh. Otsuki, Vzaimodeistvie zaryazhennykh chastits s tverdymi telami, Mir, M., 1985

[3] T. V. Ougltri, Microsoft Windows XP: Teoriya i praktika effektivnoi raboty v operatsionnoi sisteme, DiaSoft, SPb., 2002

[4] Yu. Kagan, Yu. V. Kononets, ZhETF, 66:5 (1974), 1693–1711

[5] B. F. Gordiets, A. I. Osipov, E. V.Stupochenko, L. A. Shelepin, UFN, 108:12 (1972), 655–699 | DOI

[6] N. Ashkroft, N. Mermin, Fizika tverdogo tela, v. 2, Mir, M., 1979 | Zbl

[7] N. N. Bogolyubov, Izbrannye trudy, v. 2, Naukova dumka, Kiev, 1970 | MR | Zbl

[8] Yu. A. Kashlev, TMF, 19:3 (1974), 400–413 | DOI

[9] D. N. Zubarev, “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 15, ed. R. V. Gamkrelidze, VINITI, M., 1980, 131–226 | DOI | MR | Zbl

[10] M. Gomes-Rodriquez, Phys. Rev. B, 2:10 (1970), 4262–4272 | DOI

[11] Yu. A. Kashlev, Neravnovesnaya statisticheskaya teoriya skorostei diffuzionnykh protsessov v tverdykh telakh (diffuzionnogo dekanalirovaniya i diffuzionnoi migratsii), Avtoref. dis. $\dots$ dokt. fiz.-mat. nauk, Matem. in-t im. V. A. Steklova, M., 1982

[12] J. A. Sussmann, J. Phys. Chem. Solids, 28:9 (1967), 1643–1648 | DOI

[13] Yu. A. Kashlev, TMF, 142:1 (2005), 112–126 | DOI

[14] N. P. Kalashnikov, V. S. Remizovich, M. I. Ryazanov, Stolknoveniya bystrykh zaryazhennykh chastits v tverdykh telakh, Atomizdat, M., 1980

[15] M. Goldman, Spinovaya temperatura i YaMR v tverdykh telakh, Mir, M., 1972