Vacuum polarization of a scalar field on Lie groups and homogeneous spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 1, pp. 78-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for calculating vacuum means of the scalar field energy–momentum tensor on Lie groups and homogeneous spaces. We use the generalized harmonic analysis based on the method of coadjoint representation orbits.
Keywords: vacuum polarization, energy–momentum tensor, harmonic analysis.
@article{TMF_2011_167_1_a3,
     author = {A. I. Breev and I. V. Shirokov and A. A. Magazev},
     title = {Vacuum polarization of a~scalar field on {Lie} groups and homogeneous spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--95},
     year = {2011},
     volume = {167},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a3/}
}
TY  - JOUR
AU  - A. I. Breev
AU  - I. V. Shirokov
AU  - A. A. Magazev
TI  - Vacuum polarization of a scalar field on Lie groups and homogeneous spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 78
EP  - 95
VL  - 167
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a3/
LA  - ru
ID  - TMF_2011_167_1_a3
ER  - 
%0 Journal Article
%A A. I. Breev
%A I. V. Shirokov
%A A. A. Magazev
%T Vacuum polarization of a scalar field on Lie groups and homogeneous spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 78-95
%V 167
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a3/
%G ru
%F TMF_2011_167_1_a3
A. I. Breev; I. V. Shirokov; A. A. Magazev. Vacuum polarization of a scalar field on Lie groups and homogeneous spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 1, pp. 78-95. http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a3/

[1] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Kvantovye effekty v intensivnykh vneshnikh polyakh, Atomizdat, M., 1980

[2] N. Birrell, P. Devis, Kvantovannye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR | MR | Zbl

[3] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, London Math. Soc. Stud. Texts, 17, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[4] A. DeBenedictis, K. S. Viswanathan, Stress-Energy Tensors for Higher Dimensional Gravity, arXiv: hep-th/9911060

[5] S. M. Christensen, Phys. Rev. D, 14:10 (1976), 2490–2501 | DOI | MR

[6] Ya. B. Zeldovich, A. A. Starobinskii, ZhETF, 61:6 (1971), 2161–2175

[7] C. Molina-Paris, “Energy-Momentum Tensor and Particle Creation in the de Sitter Universe”, The Eighth Marcel Grossmann Meeting, Part A, B (Jerusalem, 1997), eds. T. Piran, R. Ruffini, World Sci. Publ., River Edge, NJ, 1999, 827–829, arXiv: gr-qc/9710088 | MR

[8] R. Camporesi, A. Higichi, Phys. Rev. D, 45:10 (1992), 3591–3603 | DOI | MR

[9] A. A. Kirillov, UMN, 17:4(106) (1962), 57–110 | DOI | MR | Zbl

[10] A. A. Kirillov, Funkts. analiz i ego pril., 2:2 (1968), 40–55 | DOI | MR | Zbl

[11] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | MR | MR | Zbl

[12] B. Kostant, “Quantization and Unitary Representations. I. Prequantization”, Lectures in Modern Analysis and Applications, v. III, Lecture Notes in Math., 170, ed. C. T. Taam, Springer, Berlin, 1970, 87–208 | DOI | MR | Zbl

[13] J.-M. Souriau, Structure des systèmes dynamiques. Maîtrises de mathématique, Dunod, Paris, 1970 | MR | Zbl

[14] A. V. Shapovalov, I. V. Shirokov, TMF, 104:2 (1995), 195–213 | DOI | MR | Zbl

[15] A. V. Shapovalov, I. V. Shirokov, TMF, 106:1 (1996), 3–15 | DOI | MR | Zbl

[16] U. Miller, Simmetriya i razdelenie peremennykh, Mir, M., 1981 | MR | MR | Zbl

[17] V. Moretti, Phys. Rev. D, 56:12 (1997), 7797–7819, arXiv: hep-th/9705060 | DOI | MR

[18] I. V. Shirokov, K-orbity, garmonicheskii analiz na odnorodnykh prostranstvakh i integrirovanie differentsialnykh uravnenii, Preprint, OmGU, Omsk, 1998

[19] I. V. Shirokov, TMF, 123:3 (2000), 407–423 | DOI | MR | Zbl