Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type
Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 1, pp. 3-22
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study bi-Hamiltonian systems of hydrodynamic type with nonsingular (semisimple) nonlocal bi-Hamiltonian structures. We prove that all such systems of hydrodynamic type are diagonalizable and that the metrics of the bi-Hamiltonian structure completely determine the complete set of Riemann invariants constructed for any such system. Moreover, we prove that for an arbitrary nonsingular (semisimple) nonlocally bi-Hamiltonian system of hydrodynamic type, there exist local coordinates (Riemann invariants) such that all matrix differential-geometric objects related to this system, namely, the matrix (affinor) $V^i_j(u)$ of this system of hydrodynamic type, the metrics $g^{ij}_1(u)$ and $g^{ij}_2(u)$, the affinor $v^i_j(u)=g_1^{is}(u)g_{2,sj}(u)$, and also the affinors $(w_{1,n})^i_j(u)$ and $(w_{2,n})^i_j(u)$ of the nonsingular nonlocal bi-Hamiltonian structure of this system, are diagonal in these special “diagonalizing” local coordinates (Riemann invariants of the system). The proof is a natural corollary of the general results of our previously developed theories of compatible metrics and of nonlocal bi-Hamiltonian structures; we briefly review the necessary notions and results in those two theories.
Keywords: bi-Hamiltonian system of hydrodynamic type, compatible metrics, diagonalizable affinor, bi-Hamiltonian structure, bi-Hamiltonian affinor, integrable system.
Mots-clés : Riemann invariant
@article{TMF_2011_167_1_a0,
     author = {O. I. Mokhov},
     title = {Compatible metrics and the~diagonalizability of nonlocally {bi-Hamiltonian} systems of hydrodynamic type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--22},
     year = {2011},
     volume = {167},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a0/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 3
EP  - 22
VL  - 167
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a0/
LA  - ru
ID  - TMF_2011_167_1_a0
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 3-22
%V 167
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a0/
%G ru
%F TMF_2011_167_1_a0
O. I. Mokhov. Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type. Teoretičeskaâ i matematičeskaâ fizika, Tome 167 (2011) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2011_167_1_a0/

[1] B. A. Dubrovin, S. P. Novikov, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[2] E. V. Ferapontov, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | DOI | MR | Zbl

[3] O. I. Mokhov, E. V. Ferapontov, UMN, 45:3(273) (1990), 191–192 | DOI | MR | Zbl

[4] O. I. Mokhov, Funkts. analiz i ego pril., 40:1 (2006), 14–29, arXiv: math.DG/0406292 | DOI | MR | Zbl

[5] S. P. Tsarev, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl

[6] J. Haantjes, Indag. Math., 17:2 (1955), 158–162 | DOI | MR | Zbl

[7] A. Nijenhuis, Indag. Math., 13:2 (1951), 200–212 | DOI | MR | Zbl

[8] M. V. Pavlov, S. I. Svinolupov, R. A. Sharipov, Funkts. analiz i ego pril., 30:1 (1996), 18–29 | DOI | MR | Zbl

[9] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[10] O. I. Mokhov, TMF, 132:1 (2002), 60–73, arXiv: math.DG/0201242 | DOI | MR | Zbl

[11] O. I. Mokhov, UMN, 57:1(343) (2002), 157–158 | DOI | MR | Zbl

[12] O. I. Mokhov, UMN, 57:5(347) (2002), 157–158 | DOI | MR | Zbl

[13] O. I. Mokhov, Funkts. analiz i ego pril., 37:2 (2003), 28–40, arXiv: math.DG/0201223 | DOI | MR | Zbl

[14] O. I. Mokhov, “Frobenius manifolds as a special class of submanifolds in pseudo-Euclidean spaces”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 213–246, arXiv: 0710.5860 | MR | Zbl

[15] O. I. Mokhov, TMF, 133:2 (2002), 279–288, arXiv: math.DG/0201281 | DOI | MR

[16] O. I. Mokhov, UMN, 55:4(334) (2000), 217–218 | DOI | MR | Zbl

[17] O. I. Mokhov, Funkts. analiz i ego pril., 35:2 (2001), 24–36, arXiv: math.DG/0005051 | DOI | MR | Zbl

[18] O. I. Mokhov, J. Appl. Math., 2:7 (2002), 337–370, arXiv: math.DG/0201224 | DOI | MR | Zbl

[19] O. I. Mokhov, UMN, 56:2(338) (2001), 221–222 | DOI | MR | Zbl

[20] O. I. Mokhov, TMF, 130:2 (2002), 233–250, arXiv: math.DG/0005081 | DOI | MR | Zbl

[21] O. I. Mokhov, Funkts. analiz i ego pril., 36:3 (2002), 36–47, arXiv: math.DG/0201280 | DOI | MR | Zbl

[22] O. I. Mokhov, TMF, 138:2 (2004), 283–296, arXiv: math.DG/0202036 | DOI | MR | Zbl

[23] E. V. Ferapontov, J. Phys. A, 34:11 (2001), 2377–2388, arXiv: math.DG/0005221 | DOI | MR | Zbl

[24] B. Dubrovin, Si-Qi Liu, Y. Zhang, Comm. Pure Appl. Math., 59:4 (2006), 559–615, arXiv: math/0410027 | DOI | MR | Zbl

[25] E. V. Ferapontov, C. A. P. Galvão, O. I. Mokhov, Y. Nutku, Comm. Math. Phys., 186:3 (1997), 649–669 | DOI | MR | Zbl

[26] O. I. Mokhov, UMN, 53:3(321) (1998), 85–192 | DOI | MR | Zbl

[27] O. I. Mokhov, Simplekticheskaya i puassonova geometriya na prostranstvakh petel gladkikh mnogoobrazii i integriruemye uravneniya, In-t kompyuternykh issledovanii, Moskva, Izhevsk, 2004 | MR | MR | Zbl

[28] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lecture Notes in Math., 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl

[29] E. Witten, Nucl. Phys. B, 340:2–3 (1990), 281–332 | DOI | MR

[30] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry, Proc. of the Conference on Geometry and Topology (April 27–29, 1990), v. 1, eds. Shing-Tung Yau, Chuan-Chih Hsiung, Lehigh Univ., Bethlehem, PA, 1991, 243–310 | MR | Zbl

[31] R. Dijkgraaf, H. Verlinde, E. Verlinde, Nucl. Phys. B, 352:1 (1991), 59–86 | DOI | MR

[32] M. Kontsevich, Yu. Manin, Comm. Math. Phys., 164:3 (1994), 525–562, arXiv: hep-th/9402147 | DOI | MR | Zbl

[33] O. I. Mokhov, “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 170, ed. S. P. Novikov, AMS, Providence, RI, 1995, 121–151, arXiv: hep-th/9503076 | MR | Zbl

[34] O. I. Mokhov, “Poisson and symplectic geometry on loop spaces of smooth manifolds”, Geometry from the Pacific Rim, eds. A. J. Berrick, B. Loo, H.-Y. Wang, de Gruyter, Berlin, 1997, 285–309 | MR | Zbl

[35] O. I. Mokhov, E. V. Ferapontov, Funkts. analiz i ego pril., 30:3 (1996), 62–72, arXiv: hep-th/9505180 | DOI | MR | Zbl