Exact solutions of nonlocal nonlinear field equations in cosmology
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 452-464

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a method for seeking exact solutions of the equation of a nonlocal scalar field in a nonflat metric. In the Friedmann–Robertson–Walker metric, the proposed method can be used in the case of an arbitrary potential except linear and quadratic potentials, and it allows obtaining solutions in quadratures depending on two arbitrary parameters. We find exact solutions for an arbitrary cubic potential, which consideration is motivated by string field theory, and also for exponential, logarithmic, and power potentials. We show that the $k$-essence field can be added to the model to obtain exact solutions satisfying all the Einstein equations.
Keywords: cosmology, nonlocal scalar field, Friedmann–Robertson–Walker metric, elliptic function.
Mots-clés : exact solution
@article{TMF_2011_166_3_a8,
     author = {S. Yu. Vernov},
     title = {Exact solutions of nonlocal nonlinear field equations in cosmology},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {452--464},
     publisher = {mathdoc},
     volume = {166},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a8/}
}
TY  - JOUR
AU  - S. Yu. Vernov
TI  - Exact solutions of nonlocal nonlinear field equations in cosmology
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 452
EP  - 464
VL  - 166
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a8/
LA  - ru
ID  - TMF_2011_166_3_a8
ER  - 
%0 Journal Article
%A S. Yu. Vernov
%T Exact solutions of nonlocal nonlinear field equations in cosmology
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 452-464
%V 166
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a8/
%G ru
%F TMF_2011_166_3_a8
S. Yu. Vernov. Exact solutions of nonlocal nonlinear field equations in cosmology. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 452-464. http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a8/