Exact solutions of nonlocal nonlinear field equations in cosmology
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 452-464
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a method for seeking exact solutions of the equation of a nonlocal scalar field in a nonflat metric. In the Friedmann–Robertson–Walker metric, the proposed method can be used in the case of an arbitrary potential except linear and quadratic potentials, and it allows obtaining solutions in quadratures depending on two arbitrary parameters. We find exact solutions for an arbitrary cubic potential, which consideration is motivated by string field theory, and also for exponential, logarithmic, and power potentials. We show that the $k$-essence field can be added to the model to obtain exact solutions satisfying all the Einstein equations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
cosmology, nonlocal scalar field, Friedmann–Robertson–Walker metric, elliptic function.
Mots-clés : exact solution
                    
                  
                
                
                Mots-clés : exact solution
@article{TMF_2011_166_3_a8,
     author = {S. Yu. Vernov},
     title = {Exact solutions of nonlocal nonlinear field equations in cosmology},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {452--464},
     publisher = {mathdoc},
     volume = {166},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a8/}
}
                      
                      
                    S. Yu. Vernov. Exact solutions of nonlocal nonlinear field equations in cosmology. Teoretičeskaâ i matematičeskaâ fizika, Tome 166 (2011) no. 3, pp. 452-464. http://geodesic.mathdoc.fr/item/TMF_2011_166_3_a8/